Sensitivity of Fractional-Order Recurrent Neural Network with Encoded Physics-Informed Battery Knowledge
Abstract
:1. Introduction
2. Preliminaries
2.1. Fractional-Order Derivative
2.1.1. Fractional-Order Derivative Definitions
2.1.2. Fractional-Order Gradient
2.2. Fractional-Order Equivalent Circuit Model
3. Fractional-Order Recurrent Neural Network with Physics-Informed Knowledge
3.1. Fractional-Order State Feedback
3.2. Fractional-Order Constraints
3.2.1. Constraint in Fractional-Order PDE Form
3.2.2. Constraint of Battery Terminal Voltage Derivative Equation
3.3. Fractional-Order Descent Methods
3.3.1. Fractional-Order Gradient Descent
3.3.2. Fractional-Order Gradient Descent with Momentum
4. Experiment Setups
4.1. Battery and Operation Conditions
4.2. Dataset and Initialization
5. Sensitivity Analysis and Estimation Results
5.1. Estimation with Fractional-Order Gradient Sensitivity
5.2. Estimation with Impedance Sensitivity
5.3. Estimation with Loss Weight Sensitivity
5.4. Correlation Analysis
6. Discussion
- For the convergence speed, it would be boosted by a larger value of , , and , and by a smaller value of , , , , and ;
- For the testing loss, it would be improved by a larger value of , , and , and by a smaller value of , but does not show sensitivity to , , , , and ;
- For the estimation accuracy, it would be improved by a larger value of , , , , and , but does not show sensitivity to , , , and ;
- For the algorithm stability, it would be enhanced by a larger value of , , and , and by a smaller value of , , , , and ;
- According to the correlation analysis, if the nine fractional-order parameters can be tuned adaptively, the fractional order , the learning rate , and the capacitance have the most dynamic correlation to the performance;
- For the fractional order in FOGD and FOGDm methods, a value in range is suitable and a trade-off would be made between performance and stability;
- The ratio of the previous momentum , larger means larger inertia of the previous convergence, which makes the speed slow but improves the learning ability to achieve higher accuracy;
- The proposed algorithm achieves faster convergence speed in the middle values of the capacitance in battery FOM;
- The loss weight has opposite tuning direction to the loss weight .
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yang, R.; Xiong, R.; Ma, S.; Lin, X. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks. Appl. Energy 2020, 260, 114253. [Google Scholar] [CrossRef]
- Roman, D.; Saxena, S.; Robu, V.; Pecht, M.; Flynn, D. Machine learning pipeline for battery state-of-health estimation. Nat. Mach. Intell. 2021, 3, 447–456. [Google Scholar] [CrossRef]
- Tanim, T.R.; Dufek, E.J.; Walker, L.K.; Ho, C.D.; Hendricks, C.E.; Christophersen, J.P. Advanced diagnostics to evaluate heterogeneity in lithium-ion battery modules. ETransportation 2020, 3, 100045. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Lu, Y.; Li, K.; Han, X.; Feng, X.; Chu, Z.; Lu, L.; Huang, P.; Zhang, Z.; Zhang, Y.; Yin, F.; et al. A method of cell-to-cell variation evaluation for battery packs in electric vehicles with charging cloud data. ETransportation 2020, 6, 100077. [Google Scholar] [CrossRef]
- Schindler, M.; Sturm, J.; Ludwig, S.; Schmitt, J.; Jossen, A. Evolution of initial cell-to-cell variations during a three-year production cycle. ETransportation 2021, 8, 100102. [Google Scholar] [CrossRef]
- Su, L.; Wu, M.; Li, Z.; Zhang, J. Cycle life prediction of lithium-ion batteries based on data-driven methods. ETransportation 2021, 10, 100137. [Google Scholar] [CrossRef]
- Yang, H.; Wang, P.; An, Y.; Shi, C.; Sun, X.; Wang, K.; Zhang, X.; Wei, T.; Ma, Y. Remaining useful life prediction based on denoising technique and deep neural network for lithium-ion capacitors. ETransportation 2020, 5, 100078. [Google Scholar] [CrossRef]
- How, D.N.; Hannan, M.; Lipu, M.H.; Ker, P.J. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
- Lipu, M.H.; Hannan, M.; Hussain, A.; Ayob, A.; Saad, M.H.; Karim, T.F.; How, D.N. Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. J. Clean. Prod. 2020, 277, 124110. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Li, M.; Chen, Z. A review of key issues for control and management in battery and ultra-capacitor hybrid energy storage systems. ETransportation 2020, 4, 100064. [Google Scholar] [CrossRef]
- Han, X.; Feng, X.; Ouyang, M.; Lu, L.; Li, J.; Zheng, Y.; Li, Z. A comparative study of charging voltage curve analysis and state of health estimation of lithium-ion batteries in electric vehicle. Automot. Innov. 2019, 2, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wang, Y.; Huang, Y.; Bhushan Gopaluni, R.; Cao, Y.; Heere, M.; Mühlbauer, M.J.; Mereacre, L.; Dai, H.; Liu, X.; et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nat. Commun. 2022, 13, 2261. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Xiong, R.; Yu, Q. Fractional-order model-based incremental capacity analysis for degradation state recognition of lithium-ion batteries. IEEE Trans. Ind. Electron. 2018, 66, 1576–1584. [Google Scholar] [CrossRef]
- Li, S.; Hu, M.; Li, Y.; Gong, C. Fractional-order modeling and SOC estimation of lithium-ion battery considering capacity loss. Int. J. Energy Res. 2019, 43, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Nasser-Eddine, A.; Huard, B.; Gabano, J.D.; Poinot, T. A two steps method for electrochemical impedance modeling using fractional order system in time and frequency domains. Control Eng. Pract. 2019, 86, 96–104. [Google Scholar] [CrossRef]
- Wang, X.; Wei, X.; Zhu, J.; Dai, H.; Zheng, Y.; Xu, X.; Chen, Q. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management. ETransportation 2021, 7, 100093. [Google Scholar] [CrossRef]
- Sulzer, V.; Mohtat, P.; Aitio, A.; Lee, S.; Yeh, Y.T.; Steinbacher, F.; Khan, M.U.; Lee, J.W.; Siegel, J.B.; Stefanopoulou, A.G.; et al. The challenge and opportunity of battery lifetime prediction from field data. Joule 2021, 5, 1934–1955. [Google Scholar] [CrossRef]
- Feng, X.; Merla, Y.; Weng, C.; Ouyang, M.; He, X.; Liaw, B.Y.; Santhanagopalan, S.; Li, X.; Liu, P.; Lu, L.; et al. A reliable approach of differentiating discrete sampled-data for battery diagnosis. ETransportation 2020, 3, 100051. [Google Scholar] [CrossRef]
- Ng, M.F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the state of charge and health of batteries using data-driven machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J.; Yang, X.G. Deep neural network battery charging curve prediction using 30 points collected in 10 min. Joule 2021, 5, 1521–1534. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Z.; Chen, W.; Wang, L.; Lin, P.; Qu, C. Online accurate state of health estimation for battery systems on real-world electric vehicles with variable driving conditions considered. J. Clean. Prod. 2021, 294, 125814. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, H.; Zhang, Y.; Shen, S.; Shen, J.; Liu, Y. State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network. J. Power Source 2022, 521, 230892. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Hu, T.; He, Z.; Zhang, X.; Zhong, S. Finite-time stability for fractional-order complex-valued neural networks with time delay. Appl. Math. Comput. 2020, 365, 124715. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, X.; Long, H.; Fan, X.; Cai, T. Multistability of fractional-order recurrent neural networks with discontinuous and nonmonotonic activation functions. IEEE Access 2019, 7, 116430–116437. [Google Scholar] [CrossRef]
- Lai, X.; Yi, W.; Cui, Y.; Qin, C.; Han, X.; Sun, T.; Zhou, L.; Zheng, Y. Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter. Energy 2021, 216, 119233. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Liao, X. State-of-art survey of fractional order modeling and estimation methods for lithium-ion batteries. Fract. Calc. Appl. Anal. 2019, 22, 1449–1479. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Kirane, M. A survey of useful inequalities in fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 574–594. [Google Scholar] [CrossRef]
- Zhang, Q.; Shang, Y.; Li, Y.; Cui, N.; Duan, B.; Zhang, C. A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries. ISA Trans. 2020, 97, 448–457. [Google Scholar] [CrossRef]
- Marc, W. Efficient Numerical Methods for Fractional Differential Equations and Their Analytical Background. Ph.D. Thesis, Technischen Universität Braunschweig, Braunschweig, Germany, 2005. [Google Scholar]
- Lovoie, J.L.; Osler, T.; Tremblay, R. Fractional derivatives and special functions. SIAM Rev. 1976, 18, 240–268. [Google Scholar] [CrossRef]
- Khan, S.; Ahmad, J.; Naseem, I.; Moinuddin, M. A novel fractional gradient-based learning algorithm for recurrent neural networks. Circuits Syst. Signal Process. 2018, 37, 593–612. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Q.; Wei, Y.; Wang, Y. Study on fractional order gradient methods. Appl. Math. Comput. 2017, 314, 310–321. [Google Scholar] [CrossRef]
- Mu, H.; Xiong, R.; Zheng, H.; Chang, Y.; Chen, Z. A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Appl. Energy 2017, 207, 384–393. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, J.; Zhou, W.; Zhao, X.; Yao, W.; Chen, X. IDRLnet: A physics-informed neural network library. arXiv 2021, arXiv:2107.04320. [Google Scholar]
- Guo, D.; Yang, G.; Feng, X.; Han, X.; Lu, L.; Ouyang, M. Physics-based fractional-order model with simplified solid phase diffusion of lithium-ion battery. J. Energy Storage 2020, 30, 101404. [Google Scholar] [CrossRef]
- Guo, D.; Yang, G.; Han, X.; Feng, X.; Lu, L.; Ouyang, M. Parameter identification of fractional-order model with transfer learning for aging lithium-ion batteries. Int. J. Energy Res. 2021, 45, 12825–12837. [Google Scholar] [CrossRef]
- Zou, C.; Hu, X.; Dey, S.; Zhang, L.; Tang, X. Nonlinear fractional-order estimator with guaranteed robustness and stability for lithium-ion batteries. IEEE Trans. Ind. Electron. 2017, 65, 5951–5961. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
Rated capacity (0.5A) | 2000 mAh | Rated voltage | 3.7 V |
Max charge voltage | 4.2 V | Discharge cut-off voltage | 2.75 V |
Working temperature (charge) | 0 –45 | Working temperature (discharge) | −20 –60 |
Name | Value/Range | Name | Value/Range |
---|---|---|---|
Hidden layers | 1 | Hidden neurons | 12 |
max epoch | 300 | Performance function | MSE |
train:valid:test | 0.75:0.048:0.202 | Training goal | 1.6 |
Type | Name | Value/Range | Attribution |
---|---|---|---|
Fractional-order Gradient sensitivity | Fractional order | FOGDm in (41) | |
Momentum weight | |||
Learning rate | |||
Impedance sensitivity | Fractional order | FO PDE in (32) | |
Ratio of OCV-SOC | |||
Capacitance (unit: C) | |||
ohm resistance (unit: ) | [5 , 6 ] | ||
Loss weight sensitivity | Loss weight | final loss in (20) | |
Loss weight |
0.9 | 0.75 | 0.18 | 0.9 | 40 | 20 | 0.005 | 0.8 | 0.2 |
No. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0.72 | 0.125 | 0.5 | 11.75 | 22.75 | 5.24 | 0.89 | 0.11 | 0.001349 | 0.001158 | 0.002434 | 0.001799 |
2 | 0.47 | 0.6 | 0.251 | 0.23 | 39.2 | 18.025 | 5.34 | 0.66 | 0.34 | 0.001327 | 0.001177 | 0.001309 | 0.001889 |
3 | 0.54 | 0.98 | 0.152 | 0.16 | 23.45 | 24.325 | 5.45 | 0.38 | 0.62 | 0.218343 | 0.232547 | 0.005316 | 0.216220 |
4 | 0.08 | 0.66 | 0.1484 | 0.32 | 33.35 | 11.725 | 5.12 | 0.3 | 0.7 | 0.002358 | 0.002098 | 0.003900 | 0.002954 |
5 | 0.97 | 0.15 | 0.2186 | 0.6 | 8.15 | 23.425 | 5.52 | 0.29 | 0.71 | 0.029044 | 0.032181 | 0.003943 | 0.023360 |
6 | 0.62 | 0.13 | 0.1088 | 0.47 | 36.95 | 9.925 | 5.85 | 0.89 | 0.11 | 0.010673 | 0.009013 | 0.011097 | 0.016737 |
7 | 0.45 | 0.91 | 0.233 | 0.78 | 45.5 | 3.625 | 5.67 | 0.15 | 0.85 | 0.004387 | 0.004279 | 0.000754 | 0.005652 |
8 | 0.91 | 0.92 | 0.1394 | 0.82 | 16.25 | 16.675 | 5.93 | 0.91 | 0.09 | 0.000861 | 0.000894 | 0.000692 | 0.000782 |
9 | 0.81 | 0.14 | 0.1934 | 0.28 | 45.5 | 6.775 | 5.45 | 0.52 | 0.48 | 0.024046 | 0.025149 | 0.003720 | 0.024783 |
10 | 0.12 | 0.04 | 0.0854 | 0.66 | 12.2 | 2.95 | 5.19 | 0.34 | 0.66 | 1.044450 | 1.235187 | 0.046351 | 0.573336 |
MSE | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.5103 | 0.3907 | 0.5173 | 0.1686 | 0.3843 | 0.3870 | 0.3737 | 0.2855 | 0.2855 | |
0.5104 | 0.3977 | 0.5161 | 0.1794 | 0.3839 | 0.3957 | 0.3744 | 0.2821 | 0.2821 | |
0.5108 | 0.5532 | 0.5948 | 0.1963 | 0.3357 | 0.4748 | 0.3196 | 0.1887 | 0.1887 | |
0.5019 | 0.3272 | 0.5174 | 0.0812 | 0.3818 | 0.3115 | 0.3632 | 0.3091 | 0.3091 |
index | |||||||||
---|---|---|---|---|---|---|---|---|---|
speed 1 | ↗ | ↘ | ↘ | ↘ | ↗ | middle 4 | ↘ | ↗ | ↘ |
loss 2 | ↗ | ↗ | - | ↗ | - | - | ↘ | - | - |
accuracy 3 | ↗ | ↗ | - | ↗ | - | ↗ | ↗ | - | - |
stability | ↘ | ↘ | ↘ | ↗ | ↘ | ↗ | ↘ | ↗ | ↘ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Han, X.; Lu, L.; Chen, Y.; Ouyang, M. Sensitivity of Fractional-Order Recurrent Neural Network with Encoded Physics-Informed Battery Knowledge. Fractal Fract. 2022, 6, 640. https://doi.org/10.3390/fractalfract6110640
Wang Y, Han X, Lu L, Chen Y, Ouyang M. Sensitivity of Fractional-Order Recurrent Neural Network with Encoded Physics-Informed Battery Knowledge. Fractal and Fractional. 2022; 6(11):640. https://doi.org/10.3390/fractalfract6110640
Chicago/Turabian StyleWang, Yanan, Xuebing Han, Languang Lu, Yangquan Chen, and Minggao Ouyang. 2022. "Sensitivity of Fractional-Order Recurrent Neural Network with Encoded Physics-Informed Battery Knowledge" Fractal and Fractional 6, no. 11: 640. https://doi.org/10.3390/fractalfract6110640
APA StyleWang, Y., Han, X., Lu, L., Chen, Y., & Ouyang, M. (2022). Sensitivity of Fractional-Order Recurrent Neural Network with Encoded Physics-Informed Battery Knowledge. Fractal and Fractional, 6(11), 640. https://doi.org/10.3390/fractalfract6110640