Synchronization of Fractional-Order Uncertain Delayed Neural Networks with an Event-Triggered Communication Scheme
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Event-Triggered Control Scheme
5. Numerical Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional differential equations. In Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
- Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-Order systems and controls. In Advances in Industrial Control; Springer: London, UK, 2010. [Google Scholar]
- Wang, Y.; Gu, L.; Xu, Y.; Cao, X. Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode. IEEE Trans. Ind. Electron. 2016, 63, 6194–6204. [Google Scholar] [CrossRef]
- Li, C.; Chen, G. Chaos and hyperchaos in the fractional-order rossler equations. Phys. A Stat. Mech. Its Appl. 2004, 341, 55–61. [Google Scholar] [CrossRef]
- Debnath, L.; Feyman, R.P. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003, 54, 3413–3442. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Zeng, Z.; Zhang, H.; Wang, L.; Wang, L. New results on passivity of fractional-order uncertain neural networks. Neurocomputing 2019, 351, 51–59. [Google Scholar] [CrossRef]
- Rajivganthi, C.; Rihan, F.; Laxshmanan, S.; Rakkiappan, R.; Muthuumar, P. Synchronization of memristor-based delayed BAM neural networks with fractional-order derivatives. Complexity 2016, 21, 412–426. [Google Scholar] [CrossRef]
- Bao, H.; Park, J.H.; Cao, J. Non-fragile state estimation for fractional-order delayed memristive BAM neural networks. Neural Netw. 2019, 119, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Fei, S.; Cao, J.; Huang, C. Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control. Mathematics 2019, 7, 599. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.; Ouahab, A. Fractional functional differential inclusions with finite delay. Nonlinear Anal. 2009, 70, 2091–2105. [Google Scholar] [CrossRef]
- Tan, N.; Faruk, O.; Mine, M. Robust stability analysis of fractional order interval polynomials. ISA Trans. 2009, 48, 166–172. [Google Scholar] [CrossRef]
- Ahn, H.S.; Chen, Y. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 2008, 44, 2985–2988. [Google Scholar] [CrossRef]
- Dzielinski, A.; Sierociuk, D. Stability of discrete fractional order state—Space system. J. Vib. Control 2008, 14, 1543–1556. [Google Scholar] [CrossRef]
- Liao, Z.; Peng, C.; Li, W.; Wang, Y. Robust stability analysis for a class of fractional order systems with uncertain parameters. J. Frankl. Inst. Eng. Appl. Math. 2011, 348, 1101–1113. [Google Scholar] [CrossRef]
- Chilali, M.; Gahinet, P.; Apkarian, P. Robust pole placement in LMI regions. Inst. Electr. Electron. Eng. Autom. Control 1999, 44, 2257–2270. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Wang, Z.; Fang, J. Pinning control of fractional-order weighted complex networks. Chaos 2009, 19, 013112. [Google Scholar] [CrossRef]
- Luo, J.; Tian, W.; Zhong, S.; Shi, K.; Gu, X.M.; Wang, W. Improved delay-probability-dependent results for stochastic neural networks with randomly occurring uncertainties and multiple delays. Int. J. Syst. Sci. 2018, 49, 2039–2059. [Google Scholar] [CrossRef]
- Shi, K.; Tang, Y.; Liu, X.; Zhong, S. Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system. Optim. Control Appl. Methods 2017, 38, 1208–1226. [Google Scholar] [CrossRef]
- Syed Ali, M.; Balasubramaniam, P. Global exponential stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays. Chaos Solitons Fractals 2009, 42, 2191–2199. [Google Scholar] [CrossRef]
- Zeng, D.; Shi, K.; Zhang, R.; Zhong, S. Novel mean square exponential stability criterion of uncertain stochastic interval type-2 fuzzy neural networks with multiple time-varying delays. In Proceedings of the 2017 36th Chinese Control Conference, Dalian, China, 26–28 July 2017. [Google Scholar]
- Syed Ali, M.; Esther Rani, M. Passivity analysis of uncertain stochastic neural networks with time-varying delays and Markovian jumping parameters. Netw. Comput. Neural Syst. 2015, 26, 73–96. [Google Scholar] [CrossRef]
- Shi, K.; Tang, Y.; Zhong, S.; Yin, C.; Huang, X.; Wang, W. Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process. Int. J. Robust Nonlinear Control 2018, 28, 1693–1714. [Google Scholar] [CrossRef]
- Luo, J.; Tian, W.; Zhong, S.; Shi, K.; Wang, W. Non-fragile asynchronous event-triggered control for uncertain delayed switched neural networks. Nonlinear Anal. Hybrid Syst. 2018, 29, 54–73. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Syed Ali, M.; Huang, H.; Cao, J.; Joo, Y.H. Robust H∞ state-feedback control for nonlinear uncertain systems with mixed time-varying delay. Int. J. Control Autom. Syst. 2018, 16, 225–233. [Google Scholar] [CrossRef]
- Chen, H.; Shi, K.; Zhong, S.; Liu, X. Error state convergence on master-slave generalized uncertain neural networks using robust nonlinear H∞ Control theory. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 2042–2055. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Syed Ali, M.; Karimi, H.R. Robust H∞ control for a class of uncertain stochastic Markovian jump systems (SMJSs) with interval and distributed time-varying delays. Int. J. Syst. 2017, 48, 862–872. [Google Scholar] [CrossRef]
- Zhang, X.M.; Han, Q.L.; Zhang, B.L. An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Inf. Theory 2017, 13, 4–16. [Google Scholar] [CrossRef]
- Ge, X.H.; Han, Q.L.; Wang, Z.D. A threshold-parameter-dependent approach to designing distributed event-triggered H∞ consensus filters over sensor networks. IEEE Trans. Cybern. 2019, 49, 1148–1159. [Google Scholar] [CrossRef] [Green Version]
- Syed Ali, M.; Vadivel, R.; Saravanakumar, R. Event-triggered state estimation for Markovian jumping impulsive neural networks with interval time varying delays. Int. J. Control 2017, 92, 270–290. [Google Scholar]
- Dimarogonas, D.V.; Frazzoli, E.; Johansson, K.H. Distributed event triggered control for multi-agent systems. IEEE Trans. Autom. Control 2012, 57, 1291–1297. [Google Scholar] [CrossRef]
- Xie, D.; Xu, S.; Li, Z. Event-triggered consensus control for second-order multi-agent systems. IET Control Theory Appl. 2015, 9, 667–680. [Google Scholar] [CrossRef]
- Zhou, B.; Liao, X.; Huang, T. Leader-following exponential consensus of general linear multi-agent systems via event-triggered control with combinational measurements. Appl. Math. Lett. 2015, 40, 35–39. [Google Scholar]
- Qin, J.; Zheng, W.X.; Gao, H. On pinning synchronisability of complex networks with arbitrary topological structure. Int. J. Syst. Sci. 2011, 42, 1559–1571. [Google Scholar] [CrossRef]
- Chakravartula, S.; Indic, P.; Sundaram, B.; Killingback, T. Emergence of local synchronization in neuronal networks with adaptive couplings. PLoS ONE 2017, 12, e0178975. [Google Scholar]
- Liu, X.; Cao, J. Local synchronization of one-to-one coupled neural networks with discontinuous activations. Cogn. Neurodyn. 2011, 5, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Cao, J. Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects. Phys. A Stat. Mech. Its Appl. 2007, 386, 492–502. [Google Scholar] [CrossRef]
- He, W.; Qian, F.; Cao, J.; Han, Q.L. Impulsive synchronization of two nonidentical chaotic systems with time-varying delay. Phys. Lett. A 2011, 498–504. [Google Scholar] [CrossRef]
- Pan, L.; Cao, J.; Hu, J. Synchronization for complex networks with Markov switching via matrix measure approach. Appl. Math. Model. 2015, 39, 5636–5649. [Google Scholar] [CrossRef]
- Du, C.; Liu, L.; Shi, S. Synchronization of fractional-order complex chaotic system using active control method. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 817–823. [Google Scholar]
- Xu, Z.; He, W. Quantized synchronization of master-slave systems under event-triggered control against DoS attacks. In Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 3568–3573. [Google Scholar]
- Du, S.; Dong, L.; Ho, D.W.C. Event-triggered control for output synchronization of heterogeneous network with input saturation constraint. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 5785–5790. [Google Scholar]
- Yang, Y.; Long, Y. Event-triggered sampled-data synchronization of complex networks with time-varying coupling delays. Adv. Differ. Equ. 2020, 312, 2020. [Google Scholar] [CrossRef]
- Lundstrom, B.; Higgs, M.; Spain, W.; Fairhall, A. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 2008, 11, 1335–1342. [Google Scholar] [CrossRef]
- Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2951–2957. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.; Yu, J. LMI conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. 2017, 28, 2423–2433. [Google Scholar] [CrossRef]
- Boyd, B.; Ghoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadephia, PA, USA, 1994. [Google Scholar]
- Dinh, C.; Mai, H.V.T.; Duong, T.H. New results on stability and stabilization of delayed caputo fractional order systems with convex polytopic uncertainties. J. Syst. Sci. Complex 2020, 33, 563–583. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hymavathi, M.; Syed Ali, M.; Ibrahim, T.F.; Younis, B.A.; Osman, K.I.; Mukdasai, K. Synchronization of Fractional-Order Uncertain Delayed Neural Networks with an Event-Triggered Communication Scheme. Fractal Fract. 2022, 6, 641. https://doi.org/10.3390/fractalfract6110641
Hymavathi M, Syed Ali M, Ibrahim TF, Younis BA, Osman KI, Mukdasai K. Synchronization of Fractional-Order Uncertain Delayed Neural Networks with an Event-Triggered Communication Scheme. Fractal and Fractional. 2022; 6(11):641. https://doi.org/10.3390/fractalfract6110641
Chicago/Turabian StyleHymavathi, M., M. Syed Ali, Tarek F. Ibrahim, B. A. Younis, Khalid I. Osman, and Kanit Mukdasai. 2022. "Synchronization of Fractional-Order Uncertain Delayed Neural Networks with an Event-Triggered Communication Scheme" Fractal and Fractional 6, no. 11: 641. https://doi.org/10.3390/fractalfract6110641
APA StyleHymavathi, M., Syed Ali, M., Ibrahim, T. F., Younis, B. A., Osman, K. I., & Mukdasai, K. (2022). Synchronization of Fractional-Order Uncertain Delayed Neural Networks with an Event-Triggered Communication Scheme. Fractal and Fractional, 6(11), 641. https://doi.org/10.3390/fractalfract6110641