Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions Starlike with Exponential Function
Abstract
:1. Introduction and Definitions
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Duren, P. Univalent Functions; Grundlehren der mathematischen Wissenschaften; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983; Volumes 1–2. [Google Scholar]
- Seaborn, J.B. Hypergeometric Functions and Their Applications; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar] [CrossRef]
- Hamzat, J.O.; Oluwayemi, M.O.; Alb Lupaş, A.; Wanas, A.K. Bi-Univalent Problems Involving Generalized Multiplier Transform with Respect to Symmetric and Conjugate Points. Fractal Fract. 2022, 6, 483. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Alb Lupaş, A. Coefficient Estimates for the Functions with Respect to Symmetric Conjugate Points Connected with the Combination Binomial Series and Babalola Operator and Lucas Polynomials. Fractal Fract. 2022, 6, 360. [Google Scholar] [CrossRef]
- Kayumov, I.P. On Brennan’s conjecture for a special class of functions. Math. Notes 2005, 78, 498–502. [Google Scholar] [CrossRef]
- Girela, D. Logarithmic coefficients of univalent functions. Ann. Acad. Sci. Fenn. Math. 2000, 25, 337–350. [Google Scholar]
- Deng, Q. On the logarithmic coefficients of Bazilevič functions. Appl. Math. Comput. 2011, 217, 5889–5894. [Google Scholar] [CrossRef]
- Roth, O. A sharp inequality for the logarithmic coefficients of univalent functions. Proc. Am. Math. Soc. 2007, 135, 2051–2054. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.C.; Minda, D. Aunified treatment of some special classes of univalent functions. In Conference Proceedings and Lecture Notes in Analysis, Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. [Google Scholar]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2020, 47, 1513–1532. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 3, 77–94. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequalities Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. 2007, 1, 619–625. [Google Scholar]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Altınkaya, Ş.; Yalçın, S. Third Hankel determinant for Bazilevič functions. Adv. Math. 2016, 5, 91–96. [Google Scholar]
- Bansal, D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 2013, 26, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Krishna, D.V.; Venkateswarlu, B.; RamReddy, T. Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. 2015, 34, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, G.; Stephen, B.A.; Babalola, K.O. Third Hankel determinant for α-starlike functions. Gulf J. Math. 2014, 2, 107–113. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.; Aldawish, I.; Araci, S.; Khan, M.G. Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function. Fractal Fract. 2022, 6, 261. [Google Scholar] [CrossRef]
- Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
- Shi, L.; Shutaywi, M.; Alreshidi, N.; Arif, M.; Ghufran, M.S. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain. Fractal Fract. 2022, 6, 223. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Ullah, K.; Alreshidi, N.; Shutaywi, M. On Sharp Estimate of Third Hankel Determinant for a Subclass of Starlike Functions. Fractal Fract. 2022, 6, 437. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Raza, M.; Abbas, M. Hankel Determinant Containing Logarithmic Coefficients for Bounded Turning Functions Connected to a Three-Leaf-Shaped Domain. Mathematics 2022, 10, 2924. [Google Scholar] [CrossRef]
- Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants for a subclass of analytic functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
- Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 1–6. [Google Scholar] [CrossRef]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, M.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Darus, M.; Kiran, S. An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers. Symmetry 2020, 12, 1043. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Shaba, T.G.; Cătaş, A. Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator. Fractal Fract. 2022, 6, 186. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2021, 105, 458–467. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel Determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2022, 45, 727–740. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Goel, P.; Kumar, S. Certain class of starlike functions associated with Modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2019, 43, 957–991. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Sümer Eker, S.; Şeker, B.; Çekiç, B.; Acu, M. Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions. Axioms 2022, 11, 369. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Aldawish, I.; Arif, M.; Abbas, M.; El-Deeb, S. Estimation of the Second-Order Hankel Determinant of Logarithmic Coefficients for Two Subclasses of Starlike Functions. Symmetry 2022, 14, 2039. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions Starlike with Exponential Function. Fractal Fract. 2022, 6, 645. https://doi.org/10.3390/fractalfract6110645
Shi L, Arif M, Iqbal J, Ullah K, Ghufran SM. Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions Starlike with Exponential Function. Fractal and Fractional. 2022; 6(11):645. https://doi.org/10.3390/fractalfract6110645
Chicago/Turabian StyleShi, Lei, Muhammad Arif, Javed Iqbal, Khalil Ullah, and Syed Muhammad Ghufran. 2022. "Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions Starlike with Exponential Function" Fractal and Fractional 6, no. 11: 645. https://doi.org/10.3390/fractalfract6110645
APA StyleShi, L., Arif, M., Iqbal, J., Ullah, K., & Ghufran, S. M. (2022). Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions Starlike with Exponential Function. Fractal and Fractional, 6(11), 645. https://doi.org/10.3390/fractalfract6110645