Subordination Properties of Certain Operators Concerning Fractional Integral and Libera Integral Operator
Abstract
:1. Introduction
2. Subordination Results Regarding
3. Applications of Subordinations by Suffridge
4. Results Regarding Strong Properties of Order
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Çetinkaya, A. A Survey on the theory of integral and related operators in Geometric Function Theory. In Mathematical Analysis and Computing; Mohapatra, R.N., Yugesh, S., Kalpana, G., Kalaivani, C., Eds.; ICMAC 2019. Springer Proceedings in Mathematics & Statistics; Springer: Singapore, 2021; Volume 344. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Owa, S.; Srivastava, H.M. Some applications of the generalized Libera integral operator. Proc. Jpn. Acad. Ser. A Math. Sci. 1986, 62, 125–128. [Google Scholar] [CrossRef]
- Nunokawa, M. On starlikeness of Libera transformation. Complex Var. Elliptic Equ. 1991, 17, 79–83. [Google Scholar] [CrossRef]
- Acu, M. A preserving property of a generalized Libera integral operator. Gen. Math. 2004, 12, 41–45. [Google Scholar]
- Oros, G.; Oros, G.I. Convexity condition for the Libera integral operator. Complex Var. Elliptic Equ. 2006, 51, 69–76. [Google Scholar] [CrossRef]
- Szász, R. A sharp criterion for the univalence of Libera operator. Creat. Math. Inf. 2008, 17, 65–71. [Google Scholar]
- Oros, G.I. New differential subordination obtained by using a differential-integral Ruscheweyh-Libera operator. Miskolc Math. Notes 2020, 21, 303–317. [Google Scholar] [CrossRef]
- Oros, G.I. Study on new integral operators defined using confluent hypergeometric function. Adv. Differ. Equ. 2021, 2021, 342. [Google Scholar] [CrossRef]
- Hamzat, J.O.; Oladipo, A.T.; Oros, G.I. Application of a Multiplier Transformation to Libera Integral Operator Associated with Generalized Distribution. Symmetry 2022, 14, 1934. [Google Scholar] [CrossRef]
- Guney, H.O.; Owa, S. New extension of Alexander and Libera integral operators. Turk. J. Math. 2022, 46, 17. [Google Scholar] [CrossRef]
- Chandralekha, S. Inclusion properties for subclasses of multivalent regular functions defined on the unit disk. Malaya J. Mat. 2021, 9, 684–689. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Bulboacă, T. Properties of a certain class of multivalent functions. Bol. Soc. Parana Mat. 2022, 40, 1–9. [Google Scholar] [CrossRef]
- Kanwal, B.; Hussain, S.; Abdeljawad, T. On certain inclusion relations of functions with bounded rotations associated with Mittag-Leffler functions. AIMS Math. 2022, 7, 7866–7887. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler-confluent hypergeometric functions with fractional integral operator. Math. Meth. Appl. Sci. 2021, 44, 3605–3614. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
- Ghanim, F.; Bendak, S.; Al Hawarneh, A. Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions. Proc. R. Soc. A 2022, 478, 20210839. [Google Scholar] [CrossRef]
- Alb Lupaş, A. New Applications of the Fractional Integral on Analytic Functions. Symmetry 2021, 13, 423. [Google Scholar] [CrossRef]
- Acu, M.; Oros, G.; Rus, A.M. Fractional Integral of the Confluent Hypergeometric Function Related to Fuzzy Differential Subordination Theory. Fractal Fract. 2022, 6, 413. [Google Scholar] [CrossRef]
- Alb Lupaş, A. On Special Fuzzy Differential Subordinations Obtained for Riemann-Liouville Fractional Integral of Ruscheweyh and Sălăgean Operators. Axioms 2022, 11, 428. [Google Scholar] [CrossRef]
- Alb Lupaş, A. New Applications of Fractional Integral for Introducing Subclasses of Analytic Functions. Symmetry 2022, 14, 419. [Google Scholar] [CrossRef]
- Alb Lupaş, A. Subordination results for a fractional integral operator. Probl. Anal. Issues Anal. 2022, 11, 20–31. [Google Scholar] [CrossRef]
- Wanas, A.K.; Hammadi, N.J. Applications of Fractional Calculus on a Certain Class of Univalent Functions Associated with Wanas Operator. Earthline J. Math. Sci. 2022, 9, 117–129. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators. Fractal Fract. 2021, 5, 160. [Google Scholar] [CrossRef]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations, Theory and Applications; Marcel Dekker Inc.: New York, NY, USA, 2000. [Google Scholar]
- Pommerenke, C. Univalent Functions; Vanderhoeck and Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Briot-Bouquet differential equations and differential subordinations. Complex Var. 1997, 33, 217–237. [Google Scholar] [CrossRef]
- Suffridge, T.J. Some remarks on convex maps on the unit disc. Duke Math. J. 1970, 37, 775–777. [Google Scholar] [CrossRef]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Eenigenburg, P.; Miller, S.S.; Mocanu, P.T.; Reade, M.O. On a Briot-Bouquet differential subordination. In General Inequalities 3; I.S.N.M. Birkhäuser Verlag: Basel, Switzerland, 1983; Volume 64, pp. 339–348. [Google Scholar]
- Nunokawa, M. On properties of non-Carathéodory functions. Proc. Jpn. Acad. 1992, 68, 152–153. [Google Scholar] [CrossRef]
- Nunokawa, M. On the order of strongly starlikeness of strongly convex functions. Proc. Jpn. Acad. 1993, 69, 234–237. [Google Scholar] [CrossRef]
- Jack, I.S. Functions starlike and convex of order alpha. J. Lond. Math. Soc. 1971, 3, 469–471. [Google Scholar] [CrossRef]
- Sümer Eker, S.; Şeker, B.; Çekiç, B.; Acu, M. Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions. Axioms 2022, 11, 369. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oros, G.I.; Oros, G.; Owa, S. Subordination Properties of Certain Operators Concerning Fractional Integral and Libera Integral Operator. Fractal Fract. 2023, 7, 42. https://doi.org/10.3390/fractalfract7010042
Oros GI, Oros G, Owa S. Subordination Properties of Certain Operators Concerning Fractional Integral and Libera Integral Operator. Fractal and Fractional. 2023; 7(1):42. https://doi.org/10.3390/fractalfract7010042
Chicago/Turabian StyleOros, Georgia Irina, Gheorghe Oros, and Shigeyoshi Owa. 2023. "Subordination Properties of Certain Operators Concerning Fractional Integral and Libera Integral Operator" Fractal and Fractional 7, no. 1: 42. https://doi.org/10.3390/fractalfract7010042
APA StyleOros, G. I., Oros, G., & Owa, S. (2023). Subordination Properties of Certain Operators Concerning Fractional Integral and Libera Integral Operator. Fractal and Fractional, 7(1), 42. https://doi.org/10.3390/fractalfract7010042