Numerical Scheme for Singularly Perturbed Mixed Delay Differential Equation on Shishkin Type Meshes
Abstract
:1. Introduction
2. Problem Description
3. Stability Result
The Solution’s Decomposition
4. The Discrete Problem
4.1. Shishkin Mesh
4.2. Bakhvalov–Shishkin Mesh
4.3. Discretisation of the Problem
5. Error Estimate
5.1. Error Estimate for Shishkin Mesh
5.2. Bakhvalov–Shishkin Mesh Error Approximate
6. Numerical Experiments
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rustichini, A. Functional differential equations of mixed type: The linear autonomous case. J. Dyn. Differ. Equ. 1989, 1, 121–143. [Google Scholar] [CrossRef]
- Rustichini, A. Hopf bifurcation for functional differential equations of mixed type. J. Dyn. Differ. Equ. 1989, 1, 145–177. [Google Scholar] [CrossRef]
- Abell, A.; Elmer, C.E.; Humphries, A.R.; Vleck, E.S.V. Computation of mixed type functional differential boundary value problems. SIAM J. Appl. Dyn. Syst. 2005, 4, 755–781. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Bell, J.; Hassard, B. Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory. J. Math. Biol. 1986, 24, 583–601. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y. Delay Differential Equations with Applications in Population Dynamics; Academic Press Inc.: Cambridge, MA, USA, 1993. [Google Scholar]
- Lange, C.G.; Miura, R.M. Singular Perturbation Analysis of Boundary Value Problems for Differential-Difference Equations. V. Small Shifts with Layer Behavior. SIAM J. Appl. Math. 1994, 54, 249–272. [Google Scholar] [CrossRef]
- Lange, C.G.; Miura, R.M. Singular Perturbation Analysis of Boundary-Value Problems for Differential-Difference Equations. VI. Small Shifts with Rapid Oscillations. SIAM J. Appl. Math. 1994, 54, 273–283. [Google Scholar] [CrossRef]
- Stein, R.B. A Theoretical Analysis of Neuronal Variability. Biophys. J. 1965, 5, 173–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, B. Some models of neuronal variability. Biophys. J. 1967, 7, 37–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindarao, L.; Mohapatra, J. A numerical scheme to solve mixed parabolic-elliptic problem involving singular perturbation. Int. J. Comput. Math. 2022, 2022, 2037131. [Google Scholar] [CrossRef]
- Sekar, E.; Tamilselvan, A. Singularly perturbed delay differential equations of convection–diffusion type with integral boundary condition. J. Appl. Math. Comput. 2018, 59, 701–722. [Google Scholar] [CrossRef]
- Sekar, E.; Tamilselvan, A.; Vadivel, R.; Gunasekaran, N.; Zhu, H.; Cao, J.; Li, X. Finite difference scheme for singularly perturbed reaction diffusion problem of partial delay differential equation with non local boundary condition. Adv. Differ. Equ. 2021, 1, 151. [Google Scholar]
- Sekar, E.; Tamilselvan, A. Parameter Uniform Method for a Singularly Perturbed System of Delay Differential Equations of Reaction–Diffusion Type with Integral Boundary Conditions. Int. J. Appl. Comput. Math. 2019, 5, 85. [Google Scholar] [CrossRef]
- Lange, C.G.; Miura, R.M. Singularly perturbation analysis of boundary-value problems for differential-difference equations. SIAM J. Appl. Math. 1982, 42, 502–530. [Google Scholar] [CrossRef]
- Lange, C.G.; Miura, R.M. Singular-Perturbation Analysis of Boundary-Value Problems for Differential-Difference Equations II. Rapid Oscillations and Resonances. SIAM J. Appl. Math. 1985, 45, 687–707. [Google Scholar] [CrossRef]
- Lange, C.G.; Miura, R.M. Singular Perturbation Analysis of Boundary Value Problems for Differential-Difference Equations III. Turning Point Problems. SIAM J. Appl. Math. 1985, 45, 708–734. [Google Scholar] [CrossRef] [Green Version]
- Kadalbajoo, M.; Sharma, K.K. Numerical Analysis of Boundary-Value Problems for Singularly-Perturbed Differential-Difference Equations with Small Shifts of Mixed Type. J. Optim. Theory Appl. 2002, 115, 145–163. [Google Scholar] [CrossRef]
- Kadalbajoo, M.; Sharma, K. Numerical treatment of a mathematical model arising from a model of neuronal variability. J. Math. Anal. Appl. 2005, 307, 606–627. [Google Scholar] [CrossRef] [Green Version]
- Kadalbajoo, M.K.; Sharma, K.K. ε-Uniform fitted mesh method for singularly perturbed Differential-Difference equations mixed type of shifts with layer behavior. Int. J. Comput. Math. 2004, 81, 49–62. [Google Scholar] [CrossRef]
- Patidar, K.C.; Sharma, K.K. Uniformly convergent non-standard finite difference methods for singularly perturbed differential-difference equations with delay and advance. Int. J. Numer. Methods Eng. 2006, 66, 272–296. [Google Scholar] [CrossRef]
- Hammachukiattikul, P.; Sekar, E.; Tamilselvan, A.; Vadivel, R.; Gunasekaran, N.; Agarwal, P. Comparative Study on Numerical Methods for Singularly Perturbed Advanced-Delay Differential Equations. J. Math. 2021, 2021, 6636607. [Google Scholar] [CrossRef]
- Suli, E.; Mayers, D.F. An Introduction to Numerical Analysis; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Miller, J.J.H.; Riordan, E.O.; Shishkin, G.I. Fitted Numerical Methods for Singular Perturbation Problems; World Scientific Publishing Co.: Singapore, 1996. [Google Scholar]
3N Is the Mesh Points | |||||||
---|---|---|---|---|---|---|---|
Shishkin Mesh | |||||||
32 | 64 | 128 | 256 | 512 | 1024 | 2048 | |
Bakhvalov–Shishkin Mesh | |||||||
3N Is the Mesh Point Count | |||||||
---|---|---|---|---|---|---|---|
Shishkin Mesh | |||||||
32 | 64 | 128 | 256 | 512 | 1024 | 2048 | |
Bakhvalov–Shishkin Mesh | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elango, S.; Unyong, B. Numerical Scheme for Singularly Perturbed Mixed Delay Differential Equation on Shishkin Type Meshes. Fractal Fract. 2023, 7, 43. https://doi.org/10.3390/fractalfract7010043
Elango S, Unyong B. Numerical Scheme for Singularly Perturbed Mixed Delay Differential Equation on Shishkin Type Meshes. Fractal and Fractional. 2023; 7(1):43. https://doi.org/10.3390/fractalfract7010043
Chicago/Turabian StyleElango, Sekar, and Bundit Unyong. 2023. "Numerical Scheme for Singularly Perturbed Mixed Delay Differential Equation on Shishkin Type Meshes" Fractal and Fractional 7, no. 1: 43. https://doi.org/10.3390/fractalfract7010043
APA StyleElango, S., & Unyong, B. (2023). Numerical Scheme for Singularly Perturbed Mixed Delay Differential Equation on Shishkin Type Meshes. Fractal and Fractional, 7(1), 43. https://doi.org/10.3390/fractalfract7010043