Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent
Abstract
:1. Introduction
2. Preliminaries
2.1. Lebesgue Space with Variable Exponent
- (i)
- (ii)
- (i)
- The Hardy–Littlewood maximal operator M for is defined as
- (ii)
- The set is the collection of all satisfying and
- (iii)
- A weight is a locally integrable and positive function that is defined on and can be written as for a weight w and measurable set G.
- (iv)
2.2. Herz Spaces with Variable Exponent
- (a)
- .
- (b)
- .
- (c)
- for all
- (d)
- .
2.3. The Variable Exponent Muckenhoupt Weights
- (i)
- A weight w is called a Muckenhoupt weight if holds for almost every . The set collection of all Muckenhoupt weights. For eachThen, the finite value of is called constant.
- (ii)
- A weight is called Muckenhoupt weight if the weight belongs to the following set:
3. Grand Weighted Herz–Morrey Spaces with Variable Exponent
4. Boundedness of the Fractional Integrals
- (i)
- (ii)
- .
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruzicka, M. Electroreological Fluids: Modeling and Mathematical Theory. Lect. Notes Math. 2000, 1748, 176. [Google Scholar] [CrossRef]
- Uribe, D.C.; Fiorenza, A. Variable Lebesgue Space: Foundations and Harmonic Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Kokilashvili, V.M.; Meskhi, A.; Rafeiro, H.; Samko, S.G. Integral Operators in Non-Standard Function Spaces; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Diening, L.; Hästö, P.; Nekvinda, A. Open Problems in Variable Exponent Lebesgue and Sobolev Spaces. FSDONA04 Proc. 2004, 38–58. Available online: https://www.problemsolving.fi/pp/opFinal.pdf (accessed on 17 September 2022).
- Kokilashvili, V. On a progress in the theory of integral operators in weighted Banach function spaces. In Function Spaces, Differential Operators and Nonlinear Analysis, Proceedings of the Conference, Milovy, Bohemian-Moravian Uplands, 28 May–2 June 2004; Mathematical Institute, Academy of Sciences of the Czech Republic: Praha, Czech Republic, 2004. [Google Scholar]
- Kokilashvili, V.; Samko, S. Weighted boundedness of the maximal, singular and potential operators in variable exponent spaces. In Analytic Methods of Analysis and Differential Equations; Kilbas, A.A., Rogosin, S.V., Eds.; Cambridge Scientific Publishers: Cottenham, UK, 2008; pp. 139–164. [Google Scholar]
- Samko, S. On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators. Integr. Transf. Spec. Funct. 2005, 16, 461–482. [Google Scholar] [CrossRef]
- Almeida, A.; Drihem, D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Analaysis Appl. 2012, 394, 781–795. [Google Scholar] [CrossRef]
- Izuki, M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 2010, 36, 33–50. [Google Scholar] [CrossRef]
- Izuki, M. Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 2009, 13, 243–253. [Google Scholar]
- Samko, S. Variable exponent Herz spaces. Mediterr. J. Math. 2013, 10, 2007–2025. [Google Scholar] [CrossRef]
- Meskhi, A.; Rafeiro, H.; Zaighum, M.A. On the boundedness of Marcinkiewicz integrals on continual variable exponent Herz spaces. Georgian Math. J. 2019, 26, 105–116. [Google Scholar] [CrossRef]
- Rafeiro, H.; Samko, S. Riesz potential operator in continual variable exponents Herz spaces. Math. Nachr. 2015, 288, 465–475. [Google Scholar] [CrossRef]
- Morrey, C.B. On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43, 126–166. [Google Scholar] [CrossRef]
- Meskhi, A. Integral operators in grand Morrey spaces. arXiv 2010, arXiv:1007.1186. [Google Scholar] [CrossRef]
- Nafis, H.; Rafeiro, H.; Zaighum, M. A note on the boundedness of sublinear operators on grand variable Herz spaces. J. Inequalities Appl. 2020, 2020, 1. [Google Scholar] [CrossRef] [Green Version]
- Muckenhoupt, B. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 1972, 165, 207–226. [Google Scholar] [CrossRef]
- Cruz-Uribe, D.; Fiorenza, A.; Neugebauer, C. Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 2012, 394, 744–760. [Google Scholar] [CrossRef]
- Cruz-Uribe, D.; Wang, L.A. Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Amer. Math. Soc. 2017, 369, 1205–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultan, B.; Sultan, M.; Mehmood, M.; Azmi, F.; Alghafli, M.A.; Mlaiki, N. Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent. Aims Math. 2023, 8, 752–764. [Google Scholar] [CrossRef]
- Izuki, M.; Noi, T. Boundedness of fractional integrals on weighted Herz spaces with variable exponent. J. Ineq. Appl. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Izuki, M.; Noi, T. An intrinsic square function on weighted Herz spaces with variable exponents. J. Math. Inequal. 2017, 11, 799–816. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, B.; Azmi, F.M.; Sultan, M.; Mahmood, T.; Mlaiki, N.; Souayah, N. Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent. Fractal Fract. 2022, 6, 660. https://doi.org/10.3390/fractalfract6110660
Sultan B, Azmi FM, Sultan M, Mahmood T, Mlaiki N, Souayah N. Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent. Fractal and Fractional. 2022; 6(11):660. https://doi.org/10.3390/fractalfract6110660
Chicago/Turabian StyleSultan, Babar, Fatima M. Azmi, Mehvish Sultan, Tariq Mahmood, Nabil Mlaiki, and Nizar Souayah. 2022. "Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent" Fractal and Fractional 6, no. 11: 660. https://doi.org/10.3390/fractalfract6110660
APA StyleSultan, B., Azmi, F. M., Sultan, M., Mahmood, T., Mlaiki, N., & Souayah, N. (2022). Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent. Fractal and Fractional, 6(11), 660. https://doi.org/10.3390/fractalfract6110660