Next Article in Journal
Investigation of Novel Piecewise Fractional Mathematical Model for COVID-19
Next Article in Special Issue
Stability and Controllability Study for Mixed Integral Fractional Delay Dynamic Systems Endowed with Impulsive Effects on Time Scales
Previous Article in Journal
Dynamical Behaviors of an SIR Epidemic Model with Discrete Time
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent

1
Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan
2
Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3
Department of Mathematics, Capital University of Science and Technology, Islamabad 44000, Pakistan
4
Department of Mathematics, University of Chakwal, Chakwal 48800, Pakistan
5
Department of Natural Sciences, Community College Al-Riyadh, King Saud University, Riyadh 11451, Saudi Arabia
6
Ecole Supérieure des Sciences Economiques et Commerciales de Tunis, Université de Tunis, Tunis 1068, Tunisia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(11), 660; https://doi.org/10.3390/fractalfract6110660
Submission received: 18 September 2022 / Revised: 30 October 2022 / Accepted: 7 November 2022 / Published: 9 November 2022
(This article belongs to the Special Issue New Trends on Generalized Fractional Calculus)

Abstract

:
In this paper, we introduce grand weighted Herz–Morrey spaces with a variable exponent and prove the boundedness of fractional integrals on these spaces.

1. Introduction

In the last two decades, under the influence of some applications revealed in [1], there has been a vast amount of research into the so-called variable exponent spaces and the operators in them. The theory of such variable exponent Lebesgue, Orlicz, Lorentz and Sobolev function spaces has been developed—we refer to the books [2,3,4] and the surveying papers [5,6,7,8]. Herz spaces with a variable exponent have been recently introduced in [9,10,11]. In [12], variable parameters were used to define continual Herz spaces, and the boundedness of sublinear operators in these spaces was proved. The boundedness of other operators such as the Riesz potential operator and the Marcinkiewicz integrals was proved in [13,14].
The concept of Morrey spaces L p , λ was introduced by C. Morrey in 1938 (see [15]) in order to study regularity questions that appear in the calculus of variations. They describe local regularity more precisely than Lebesgue spaces and are widely used not just in harmonic analysis but also in PDEs. Meskhi introduced the idea of grand Morrey spaces L r ) , θ , λ and derived the boundedness of a class of integral operators (Hardy–Littlewood maximal functions, Calderón–Zygmund singular integrals and potentials) in these spaces—see ([16]). Moreover, Izuki [11] defined the Herz–Morrey spaces with a variable exponent and proved the boundedness of vector-valued sublinear operators on these spaces.
In [17], the idea of grand variable Herz spaces K ˙ q ( · ) α , p ) , θ ( R n ) was introduced, and the boundedness of sublinear operators K ˙ q ( · ) α , p ) , θ ( R n ) was proved. Muckenhoupt in [18] established the theory of weights, called the Muckenhoupt A p theory, in the study of weighted function spaces and greatly developed real analysis. Weighted norm inequalities for the maximal operator on variable Lebesgue spaces were proved in [19]. The boundedness of the fractional integrals on variable weighted Lebesgue spaces by using the extrapolation theorem can be checked in [20]. The idea of grand weighted Herz spaces with a variable exponent was introduced in [21], and the boundedness of fractional integrals on these spaces was proved. In this article, we introduce the concept of grand weighted Herz–Morrey spaces with a variable exponent and prove the boundedness of the fractional integral operator in these spaces. There are four sections in this article. The first section is dedicated to the introduction, and the second section contains some basic definitions and lemmas. We introduce the concept of grand weighted Herz–Morrey spaces in Section 3, and the boundedness of the fractional integral operator on grand weighted Herz–Morrey spaces is proved in the last section.

2. Preliminaries

For this section we refer to [2,3,10,11,22,23].

2.1. Lebesgue Space with Variable Exponent

Assume that G R n is an open set and p ( · ) : G [ 1 , ) is a real-valued measurable function. Let the following condition hold:
1 p ( G ) p + ( G ) < ,
where
(i)
p : = ess inf g G p ( g )
(ii)
p + : = ess sup g G p ( g ) .
The Lebesgue space L p ( · ) ( G ) is the space of measurable functions f 1 on G such that
I L p ( · ) ( f 1 ) = G | f 1 ( g ) | p ( g ) d g < ,
where the norm is defined as
f 1 L p ( · ) ( G ) = ess inf γ > 0 : I L p ( · ) f 1 γ 1 ,
which is the Banach function space, and p ( g ) = p ( g ) p ( g ) 1 denotes the conjugate exponent of p ( g ) .
Next, we define the space L loc p ( · ) ( G ) as
L loc p ( · ) ( G ) : = κ : κ L p ( · ) ( K ) for all compact subsets K G .
Now, we define the log-condition,
| η ( z 1 ) η ( z 2 ) | C ln | z 1 z 2 | , | z 1 z 2 | 1 2 , z 1 , z 2 G ,
where C = C ( η ) > 0 is not dependent on z 1 , z 2 .
For the decay condition, let η ( 1 , ) , such that
| η ( z 1 ) η | C ln ( e + | z 1 | ) ,
| η ( z 1 ) η 0 | C ln | z 1 | , | z 1 | 1 2 ,
Equation (4) holds for η 0 ( 1 , ) in the case of homogenous Herz spaces. We adopt the following notations in this paper:
(i)
The Hardy–Littlewood maximal operator M for f L loc 1 ( G ) is defined as
M f ( g ) : = sup t > 0 t n D ( g , r ) | f ( g ) | d g ( g G ) ,
where D ( g , t ) : = { y G : | g y | < t } .
(ii)
The set P ( G ) is the collection of all p ( · ) satisfying p > 1 and p + < .
(iii)
A weight is a locally integrable and positive function that is defined on R n and can be written as ω ( G ) : = G ω ( g ) d g for a weight w and measurable set G.
(iv)
The set of p ( · ) satisfying (3) and (4) is represented by L H ( R n ) .
C is a constant that is independent of the main parameters involved, and its value varies from line to line.
Lemma 1
(Generalized Hölder’s inequality [17]). Assume that G is a measurable subset of R n , and 1 p ( G ) p + ( G ) . Then,
f g L r ( · ) ( G ) C f L p ( · ) ( G ) g L q ( · ) ( G )
holds, where f L p ( · ) ( G ) , g L q ( · ) ( G ) and 1 r ( z ) = 1 p ( z ) + 1 q ( z ) for every z G .

2.2. Herz Spaces with Variable Exponent

We adopt the following notations in this subsection:
(a)
χ k = χ R k .
(b)
R k = D k D k 1 .
(c)
D k = D ( 0 , 2 k ) = { x R n : | x | < 2 k } for all k Z .
(d)
R t , τ : = D ( 0 , τ ) D ( 0 , t ) .
Definition 1.
Let r [ 1 , ) , α R and s ( · ) P ( R n ) . The homogenous Herz space K ˙ s ( · ) α , r ( R n ) is defined by
K ˙ s ( · ) α , r ( R n ) = f L loc q ( · ) ( R n { 0 } ) : f K ˙ s ( · ) α , r ( R n ) < ,
where
f K ˙ s ( · ) α , r ( R n ) = k = k = 2 k α f χ k L s ( · ) r 1 r .
Definition 2.
Let r [ 1 , ) , α R and s ( · ) P ( R n ) . The non-homogenous Herz space K s ( · ) α , r ( R n ) is defined by
K s ( · ) α , r ( R n ) = f L loc s ( · ) ( R n { 0 } ) : f K s ( · ) α , r ( R n ) < ,
where
f K s ( · ) α , r ( R n ) = k = k = 2 k α f χ k L s ( · ) r 1 r + f L s ( · ) ( D ( 0 , 1 ) ) .

2.3. The Variable Exponent Muckenhoupt Weights

Let r ( · ) P ( R n ) , and w is a weight. The weighted Lebesgue space L r ( · ) is the collection of all complex-valued measurable functions f such that f w 1 p ( · ) L r ( · ) ( R n ) . L r ( · ) ( w ) is a Banach space, and its norm is given by
f L r ( · ) ( w ) : = f w 1 r ( · ) L r ( · ) ,
where r ( · ) is the conjugate exponent of r ( · ) given by 1 r ( · ) + 1 r ( · ) = 1 . Next, we define Muckenhoupt classes by starting with classical Muckenhoupt weights.
Definition 3.
Suppose r ( · ) P ( R n ) , a weight w is called an A r ( · ) weight if
sup D : b a l l 1 | D | w 1 p ( · ) χ D L r ( · ) w 1 r ( · ) χ D L r ( · ) < .
The set A r ( · ) consists of all A r ( · ) weights.
Now, we give the definitions of the Muckenhoupt classes A r with r = 1 , .
Definition 4.
(i) 
A weight w is called a Muckenhoupt A 1 weight if M w ( z ) w ( z ) holds for almost every z R n . The set A 1 collection of all Muckenhoupt A 1 weights. For each w A 1
[ w ] A 1 : = sup D : b a l l 1 | D | D w ( z ) d z w 1 L ( D ) .
Then, the finite value of [ w ] A 1 is called A 1 constant.
(ii) 
A weight is called Muckenhoupt weight A if the weight belongs to the following set:
A : = 1 < r < A r .
Definition 5.
Suppose r ( · ) P ( R n ) ; a weight is called a A r ( · ) weight if
sup D : b a l l | D | P D w χ D L 1 w 1 χ D L r ( · ) / r ( · ) < ,
where P D : = ( 1 | D | D 1 r ( z ) d z ) 1 is the harmonic average of r ( · ) over D. The set A r ( · ) consists of all A r ( · ) weights.
Definition 6.
Let 0 < α < n and r 1 ( · ) , r 2 ( · ) P ( R n ) such that 1 r 2 ( z ) 1 r 1 ( z ) α n . A weight w is called A ( r 1 ( · ) , r 2 ( · ) ) weight is
w χ D L r 2 ( · ) w 1 χ D L r 1 ( · ) | D | 1 α n ,
holds for all balls D R n .
Lemma 2
([22]). Assume that G is a Banach function space, and the Hardy–Littlewood maximal operator M is weakly bounded on G, such that following inequality holds for all g G and λ > 0 :
χ ( M g > λ ) G λ 1 g G ,
then, we have
sup D : b a l l 1 | D | χ D G χ D G < .
Lemma 3
([22]). Let M be bounded on the associate space X , and X is a Banach function space. Then, there exists a constant δ ( 0 , 1 ) such that for all measurable sets E D and for all balls D R n ,
χ E X χ D X | E | | D | δ .
Let r 2 ( · ) P ( R n ) L H ( R n ) , w r 2 ( · ) A r 2 ( · ) , w r 2 ( · ) A r 2 ( · ) , and for δ 1 , δ 2 ( 0 , 1 )
χ E L r 2 ( · ) ( w r 2 ( · ) ) χ D L r 2 ( · ) ( w r 2 ( · ) ) = χ E L r 2 ( · ) ( w r 2 ( · ) ) χ D L r 2 ( · ) ( w r 2 ( · ) ) | E | | D | δ 1 .
χ E L r 2 ( · ) ( w r 2 ( · ) ) χ D L r 2 ( · ) ( w r 2 ( · ) ) | E | | D | δ 2 .
For more details, see [22].

3. Grand Weighted Herz–Morrey Spaces with Variable Exponent

In this section, we first define grand Herz spaces and then introduce the concept of grand weighted Herz–Morrey spaces with a variable exponent.
Definition 7
([17]). Let α ( · ) L ( R n ) , r [ 1 , ) , s : R n [ 1 , ) , θ > 0 . A grand Herz space with variable exponent K ˙ s ( · ) α ( · ) , r ) , θ ( R n ) is defined by
K ˙ s ( · ) α ( · ) , r ) , θ ( R n ) = g L loc s ( · ) ( R n { 0 } ) : g K ˙ s ( · ) α ( · ) , r ) , θ ( R n ) < ,
where
g K ˙ s ( · ) α ( · ) , r ) , θ ( R n ) = sup δ > 0 δ θ k Z 2 k α ( · ) r ( 1 + ϵ ) g χ k L s ( · ) r ( 1 + δ ) 1 r ( 1 + δ ) = sup δ > 0 δ θ r ( 1 + δ ) g K ˙ s ( · ) α ( · ) , r ( 1 + δ ) ( R n ) .
Now, we define variable exponent-weighted Lebesgue space.
Definition 8
([22]). Let Ω R n be a measurable set and w a positive and locally integrable function on Ω. The L loc r ( · ) ( Ω , w ) is the collection of all functions g that satisfy the following condition: for all compact sets E Ω , there is a constant λ > 0 such that
E g ( z ) λ r ( z ) w ( z ) d z < .
Definition 9.
Let q ( · ) P ( R n ) , 0 < r < , 0 λ < , α R , θ > 0 . The homogeneous grand weighted Herz–Morrey spaces with variable exponents M K ˙ λ , q ( · ) α , r ) , θ ( w ) are the collection of L loc q ( · ) ( R n / { 0 } , w ) such that
M K ˙ λ , q ( · ) α , r ) , θ ( w ) : = L loc q ( · ) R n / { 0 } : f M K ˙ λ , q ( · ) α , r ) , θ ( w ) < ,
where
f M K ˙ λ , q ( · ) α , r ) , θ ( w ) = sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) f χ k L q ( · ) ( w ) r ( 1 + δ ) 1 r ( 1 + δ ) .
Non-homogeneous grand weighted Herz–Morrey spaces can be defined in a similar way. When λ = 0 , the grand weighted Herz–Morrey spaces with a variable exponent become grand weighted Herz spaces with a variable exponent; see [21].

4. Boundedness of the Fractional Integrals

Definition 10.
Fractional integrals are given as follows:
Let 0 < ζ < n . Then, the fractional integral operator I ζ is defined by
I ζ f ( z 1 ) : = R n f ( z 2 ) | z 1 z 2 | n ζ d z 2 .
Theorem 1
([22]). Let r 1 ( · ) P ( R n ) L H ( R n ) , 0 < ζ < n / r 1 + and σ : = ( n / ζ ) . Define r 2 ( · ) by 1 / r 2 ( · ) = 1 / r 1 ( · ) ζ / n . Then, for all weights w such that ( r 2 ( · ) / σ , w σ ) is an M-pair, I ζ is bounded from L r 1 ( · ) ( w r 1 ( · ) ) to L r 2 ( · ) ( w r 2 ( · ) ) .
Theorem 2.
Let 1 < r < , q 2 ( · ) P ( R n ) L H ( R n ) , w q 2 ( · ) A 1 , δ 1 , δ 2 ( 0 , 1 ) be the constants appearing in (11) and (12), respectively. α and ζ are such that
(i) 
n δ 1 < α < n δ 2 ζ
(ii) 
0 < ζ < n ( δ 1 + δ 2 ) .
Define q 1 ( · ) by 1 / q 2 ( · ) = 1 / q 1 ( · ) ζ / n . Then, fractional integral operator I ζ is a bounded operator from M K ˙ λ , q 2 ( · ) α , r ) , θ ( w q 2 ( · ) ) to M K ˙ λ , q 1 ( · ) α , r ) , θ ( w q 1 ( · ) ) .
Proof .
Let M K ˙ λ , q 2 ( · ) α , r ) , θ ( w q 2 ( · ) ) , f j : = f χ j for any j Z ; then, f = j = f j , and we have
I ζ f M K ˙ λ , q 2 ( · ) α , r ) , θ ( w q 2 ( · ) ) = sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) χ k I ζ f L q 2 ( · ) ( w q 2 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) = sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) j = χ k ( I ζ f j ) L q 2 ( · ) ( w q 2 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) j k 2 χ k ( I ζ f j ) L q 2 ( · ) ( w q 2 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) + sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) j = k 1 k + 1 χ k ( I ζ f j ) L q 2 ( · ) ( w q 2 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) + sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) j k + 2 χ k ( I ζ f j ) L q 2 ( · ) ( w q 2 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) = : E 1 + E 2 + E 3 .
As operator I ζ is bounded on a weighted Lebesgue space, and so for E 2 ,
E 2 sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) j = k 1 k + 1 χ k ( I ζ f j ) L q 2 ( · ) ( w q 2 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) j = k 1 k + 1 ( f χ j ) L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) ( f χ k ) L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) f M K ˙ λ , q 1 ( · ) α , r ) , θ ( w q 1 ( · ) ) .
For E 1 , by using the size condition and Hölder’s inequality, we have
| I ζ ( f j ) ( z 1 ) | χ k ( z 1 ) χ k ( z 1 ) R n | z 1 z 2 | ζ n | f j ( z 2 ) | d z 2 2 k ( ζ n ) f j L q 1 ( · ) ( w q 1 ( · ) ) χ j ( L q 1 ( · ) ( w q 1 ( · ) ) ) . χ k ( z 1 ) .
By using Lemma 2, we get
I ζ f j χ k L q 2 ( · ) ( w q 2 ( · ) ) 2 k ζ f j L q 1 ( · ) ( w q 1 ( · ) ) χ j L ( q 1 ( · ) ( w q 1 ( · ) ) ) 2 k n χ D k L q 2 ( · ) ( w q 2 ( · ) ) 2 k ζ f j L q 1 ( · ) ( w q 1 ( · ) ) χ j ( L q 1 ( · ) ( w q 1 ( · ) ) ) χ D k ( L q 2 ( · ) ( w q 2 ( · ) ) ) 1 .
By using (12), we have
I ζ f j χ k L q 2 ( · ) ( w q 2 ( · ) ) 2 k ζ f j L q 1 ( · ) ( w q 1 ( · ) ) χ j ( L q 1 ( · ) ( w q 1 ( · ) ) ) χ D k ( L q 2 ( · ) ( w q 2 ( · ) ) ) 1 = 2 k ζ f j L q 1 ( · ) ( w q 1 ( · ) ) χ j ( L q 1 ( · ) ( w q 1 ( · ) ) ) χ D k ( L q 2 ( · ) ( w q 2 ( · ) ) ) 1 χ D j ( L q 2 ( · ) ( w q 2 ( · ) ) ) χ D k ( L q 2 ( · ) ( w q 2 ( · ) ) ) 2 k ζ 2 n δ 2 ( j k ) f j L q 1 ( · ) ( w q 1 ( · ) ) χ j ( L q 1 ( · ) ( w q 1 ( · ) ) ) χ D j ( L q 2 ( · ) ( w q 2 ( · ) ) ) 1 .
By the boundednesss of I ζ : L q 1 ( · ) ( w q 1 ( · ) ) L q 2 ( · ) ( w q 2 ( · ) ) , using the inequality 2 j ζ χ D j ( I ζ f D j ) ( x ) , we have
χ D j L q 2 ( · ) ( w q 2 ( · ) ) 2 j ζ I ζ χ B j L q 2 ( · ) ( w q 2 ( · ) ) 2 j ζ χ D j L q 1 ( · ) ( w q 1 ( · ) ) .
By using Lemma 2 again, we obtain
χ D j L q 2 ( · ) ( w q 2 ( · ) ) 2 j ζ χ D j L q 1 ( · ) ( w q 1 ( · ) ) 2 j ( n ζ ) χ D j ( L q 1 ( · ) ( w q 1 ( · ) ) ) 1 2 j ( n ζ ) χ j ( L q 1 ( · ) ( w q 1 ( · ) ) ) 1 .
By using the above inequalities, we get
I ζ f j χ k L q 2 ( · ) ( w q 2 ( · ) ) 2 k ζ 2 n δ 2 ( j k ) 2 j ( n ζ ) f j L q 1 ( · ) ( w q 1 ( · ) ) χ D j L q 2 ( · ) ( w q 2 ( · ) ) 1 χ D j ( L q 2 ( · ) ( w q 2 ( · ) ) ) 1 = 2 ( ζ n δ 2 ) ( k j ) f j L q 1 ( · ) ( w q 1 ( · ) ) 2 j n χ D j L q 2 ( · ) ( w q 2 ( · ) ) χ D j ( L q 2 ( · ) ( w q 2 ( · ) ) ) 1 2 ( ζ n δ 2 ) ( k j ) f j L q 1 ( · ) ( w q 1 ( · ) ) .
It is known that ζ n δ 2 + α < 0 ; thus, we consider two cases 1 < r ( 1 + δ ) < and 0 < r ( 1 + δ ) 1 . Now, consider the first case 1 < r ( 1 + δ ) < ; by applying Hölder’s inequality, we get
E 1 sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 2 k α r ( 1 + δ ) j = k 2 χ k I ζ ( f j ) L q 2 ( · ) ( w q 2 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 2 α j j = k 2 2 ( ζ n δ 2 + α ) ( k j ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ [ δ θ k = j = k 2 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 2 ( ζ n δ 2 + α ) ( k j ) r ( 1 + δ ) / 2 × j = k 2 2 ( ζ n δ 2 + α ) ( k j ) ( r ( 1 + δ ) ) / 2 r ( 1 + δ ) ( r ( 1 + δ ) ) ] 1 r ( 1 + δ )
sup δ > 0 sup k o Z 2 k 0 λ δ θ k = j = k 2 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 2 ( ζ n δ 2 + α ) ( k j ) r ( 1 + δ ) / 2 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ j = 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) k j 2 2 ( ζ n δ 2 + α ) ( k j ) r ( 1 + δ ) / 2 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) f M K ˙ λ , q 1 ( · ) α , r ) , θ ( w q 1 ( · ) ) .
For 0 < r ( 1 + δ ) 1 , we get
E 1 sup δ > 0 sup k o Z 2 k 0 λ δ θ k = 2 α j j = k 2 2 ( ζ n δ 2 + α ) ( k j ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k = j = k 2 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 2 ( ζ n δ 2 + α ) ( k j ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ j = 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) k j 2 2 ( ζ n δ 2 + α ) ( k j ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ l = 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) f M K ˙ λ , q 1 ( · ) α , r ) , θ ( w q 1 ( · ) ) .
Now, we estimate E 3 ; by using the size condition and Hölder’s inequality, for j , k Z with j k + 2 , we have
| I ζ ( f j ) ( z 1 ) | χ k ( z 1 ) χ k ( z 1 ) D j | z 1 z 2 | ζ n | f j ( z 2 ) | d z 2 2 j ( ζ n ) f j L q 1 ( · ) ( w q 1 ( · ) ) χ j L q 1 ( · ) ( w q 1 ( · ) ) . χ k ( z 1 ) .
By taking the L p 2 ( · ) ( w p 2 ( · ) ) -norm, we get
I ζ f j χ k L q 2 ( · ) ( w q 2 ( · ) ) 2 j ( n + ζ ) f j L q 1 ( · ) ( w q 1 ( · ) ) χ j L q 1 ( · ) ( w q 1 ( · ) ) χ k L q 2 ( · ) ( w q 2 ( · ) ) 2 j ( n + ζ ) f j L q 1 ( · ) ( w q 1 ( · ) ) χ j L q 1 ( · ) ( w q 1 ( · ) ) χ j L q 2 ( · ) ( w q 2 ( · ) ) χ k L q 2 ( · ) ( w q 2 ( · ) ) χ j L q 2 ( · ) ( w q 2 ( · ) ) 2 j ( n + ζ ) 2 n δ 1 ( k j ) f j L q 1 ( · ) ( w q 1 ( · ) ) χ j L q 1 ( · ) ( w q 1 ( · ) ) χ j L q 2 ( · ) ( w q 2 ( · ) ) .
By using the definition of A ( p 1 ( · ) , p 2 ( · ) ) , we obtain
χ j L q 1 ( · ) ( w q 1 ( · ) ) χ j L q 2 ( · ) ( w q 2 ( · ) ) χ D j L q 1 ( · ) ( w q 1 ( · ) ) χ D j L q 2 ( · ) ( w q 2 ( · ) ) w 1 χ D j L q 1 ( · ) w χ D j L q 2 ( · ) 2 j n ( 1 ζ / n ) .
Hence, we have
I ζ f j χ k L q 2 ( · ) ( w q 2 ( · ) ) 2 j ( n + ζ ) 2 n δ 1 ( k j ) f j L q 1 ( · ) ( w q 1 ( · ) ) χ j L q 1 ( · ) ( w q 1 ( · ) ) χ j L q 2 ( · ) ( w q 2 ( · ) ) 2 j ( n + ζ ) 2 n δ 1 ( k j ) 2 j n ( 1 ζ / n ) f j L q 1 ( · ) ( w q 1 ( · ) ) 2 n δ 1 ( k j ) f j L q 1 ( · ) ( w q 1 ( · ) ) .
Therefore, we get
E 3 = sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) j k + 2 χ k ( I ζ f j ) L q 2 ( · ) ( w q 2 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z 2 k α r ( 1 + δ ) j k + 2 2 n δ 1 ( k j ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z j k + 2 2 ( α + n δ 1 ) ( k j ) 2 α j f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) .
For α + n δ 1 > 0 , we consider the two cases: 1 < r ( 1 + δ ) < and 0 < r ( 1 + δ ) 1 . Now, consider the first case 1 < r ( 1 + δ ) < ; by applying Hölder’s inequality, we get
E 3 sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z j k + 2 2 ( α + n δ 1 ) ( k j ) 2 α j f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ [ δ θ k = j k + 2 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 2 ( n δ 1 + α ) ( k j ) r ( 1 + δ ) / 2 × j k + 2 2 ( n δ 1 + α ) ( k j ) ( r ( 1 + δ ) ) / 2 r ( 1 + δ ) ( r ( 1 + δ ) ) ] 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ k = j k + 2 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 2 ( n δ 1 + α ) ( k j ) r ( 1 + δ ) / 2 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ j = 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) k j 2 2 ( n δ 1 + α ) ( k j ) r ( 1 + δ ) / 2 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ j = 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) f M K ˙ λ , q 1 ( · ) α , r ) , θ ( w q 1 ( · ) ) .
For 0 < r ( 1 + δ ) 1 , we get
E 3 sup δ > 0 sup k o Z 2 k 0 λ δ θ k Z j k + 2 2 ( α + n δ 1 ) ( k j ) 2 α j f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ )
sup δ > 0 sup k o Z 2 k 0 λ δ θ k = j k + 2 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 2 ( n δ 1 + α ) ( k j ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ j = 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) k j 2 2 ( n δ 1 + α ) ( k j ) r ( 1 + δ ) 1 r ( 1 + δ ) sup δ > 0 sup k o Z 2 k 0 λ δ θ j = 2 α j r ( 1 + δ ) f j L q 1 ( · ) ( w q 1 ( · ) ) r ( 1 + δ ) 1 r ( 1 + δ ) f M K ˙ λ , q 1 ( · ) α , r ) , θ ( w q 1 ( · ) ) ,
which completes the proof. □

Author Contributions

Contributions from all authors were equal and significant. The original manuscript was read and approved by all authors. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors F. Azmi and N. Mlaiki would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ruzicka, M. Electroreological Fluids: Modeling and Mathematical Theory. Lect. Notes Math. 2000, 1748, 176. [Google Scholar] [CrossRef]
  2. Uribe, D.C.; Fiorenza, A. Variable Lebesgue Space: Foundations and Harmonic Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
  3. Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
  4. Kokilashvili, V.M.; Meskhi, A.; Rafeiro, H.; Samko, S.G. Integral Operators in Non-Standard Function Spaces; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
  5. Diening, L.; Hästö, P.; Nekvinda, A. Open Problems in Variable Exponent Lebesgue and Sobolev Spaces. FSDONA04 Proc. 2004, 38–58. Available online: https://www.problemsolving.fi/pp/opFinal.pdf (accessed on 17 September 2022).
  6. Kokilashvili, V. On a progress in the theory of integral operators in weighted Banach function spaces. In Function Spaces, Differential Operators and Nonlinear Analysis, Proceedings of the Conference, Milovy, Bohemian-Moravian Uplands, 28 May–2 June 2004; Mathematical Institute, Academy of Sciences of the Czech Republic: Praha, Czech Republic, 2004. [Google Scholar]
  7. Kokilashvili, V.; Samko, S. Weighted boundedness of the maximal, singular and potential operators in variable exponent spaces. In Analytic Methods of Analysis and Differential Equations; Kilbas, A.A., Rogosin, S.V., Eds.; Cambridge Scientific Publishers: Cottenham, UK, 2008; pp. 139–164. [Google Scholar]
  8. Samko, S. On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators. Integr. Transf. Spec. Funct. 2005, 16, 461–482. [Google Scholar] [CrossRef]
  9. Almeida, A.; Drihem, D. Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Analaysis Appl. 2012, 394, 781–795. [Google Scholar] [CrossRef]
  10. Izuki, M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 2010, 36, 33–50. [Google Scholar] [CrossRef]
  11. Izuki, M. Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 2009, 13, 243–253. [Google Scholar]
  12. Samko, S. Variable exponent Herz spaces. Mediterr. J. Math. 2013, 10, 2007–2025. [Google Scholar] [CrossRef]
  13. Meskhi, A.; Rafeiro, H.; Zaighum, M.A. On the boundedness of Marcinkiewicz integrals on continual variable exponent Herz spaces. Georgian Math. J. 2019, 26, 105–116. [Google Scholar] [CrossRef]
  14. Rafeiro, H.; Samko, S. Riesz potential operator in continual variable exponents Herz spaces. Math. Nachr. 2015, 288, 465–475. [Google Scholar] [CrossRef]
  15. Morrey, C.B. On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43, 126–166. [Google Scholar] [CrossRef]
  16. Meskhi, A. Integral operators in grand Morrey spaces. arXiv 2010, arXiv:1007.1186. [Google Scholar] [CrossRef]
  17. Nafis, H.; Rafeiro, H.; Zaighum, M. A note on the boundedness of sublinear operators on grand variable Herz spaces. J. Inequalities Appl. 2020, 2020, 1. [Google Scholar] [CrossRef] [Green Version]
  18. Muckenhoupt, B. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 1972, 165, 207–226. [Google Scholar] [CrossRef]
  19. Cruz-Uribe, D.; Fiorenza, A.; Neugebauer, C. Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 2012, 394, 744–760. [Google Scholar] [CrossRef]
  20. Cruz-Uribe, D.; Wang, L.A. Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Amer. Math. Soc. 2017, 369, 1205–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  21. Sultan, B.; Sultan, M.; Mehmood, M.; Azmi, F.; Alghafli, M.A.; Mlaiki, N. Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent. Aims Math. 2023, 8, 752–764. [Google Scholar] [CrossRef]
  22. Izuki, M.; Noi, T. Boundedness of fractional integrals on weighted Herz spaces with variable exponent. J. Ineq. Appl. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
  23. Izuki, M.; Noi, T. An intrinsic square function on weighted Herz spaces with variable exponents. J. Math. Inequal. 2017, 11, 799–816. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Sultan, B.; Azmi, F.M.; Sultan, M.; Mahmood, T.; Mlaiki, N.; Souayah, N. Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent. Fractal Fract. 2022, 6, 660. https://doi.org/10.3390/fractalfract6110660

AMA Style

Sultan B, Azmi FM, Sultan M, Mahmood T, Mlaiki N, Souayah N. Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent. Fractal and Fractional. 2022; 6(11):660. https://doi.org/10.3390/fractalfract6110660

Chicago/Turabian Style

Sultan, Babar, Fatima M. Azmi, Mehvish Sultan, Tariq Mahmood, Nabil Mlaiki, and Nizar Souayah. 2022. "Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent" Fractal and Fractional 6, no. 11: 660. https://doi.org/10.3390/fractalfract6110660

APA Style

Sultan, B., Azmi, F. M., Sultan, M., Mahmood, T., Mlaiki, N., & Souayah, N. (2022). Boundedness of Fractional Integrals on Grand Weighted Herz–Morrey Spaces with Variable Exponent. Fractal and Fractional, 6(11), 660. https://doi.org/10.3390/fractalfract6110660

Article Metrics

Back to TopTop