Fractal Perturbation of the Nadaraya–Watson Estimator
Abstract
:1. Introduction
2. Construction of Fractal Interpolation Functions
3. The Nadaraya–Watson Estimator
4. Fractal Perturbation of the Nadaraya–Watson Estimator
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Györfi, L.; Kohler, M.; Krzyzak, A.; Walk, H. A Distribution-Free Theory of Nonparametric Regression; Springer: New York, NY, USA, 2002. [Google Scholar]
- Härdle, W.; Müller, M.; Sperlich, S.; Werwatz, A. Nonparametric and Semiparametric Models; Springer: New York, NY, USA, 2004. [Google Scholar]
- Hart, J.D. Nonparametric Smoothing and Lack-of-Fit Tests; Springer: New York, NY, USA, 1997. [Google Scholar]
- Li, Q.; Racine, J.S. Nonparametric Econometrics; Princeton University Press: Mercer County, NJ, USA, 2007. [Google Scholar]
- Tsybakov, A.B. Introduction to Nonparametric Estimation; Springer: New York, NY, USA, 2009. [Google Scholar]
- Wasserman, L. All of Nonparametric Statistics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Chu, C.-K.; Marron, J.S. Choosing a kernel regression estimator. Stat. Sci. 1991, 6, 404–436. [Google Scholar] [CrossRef]
- Jones, M.C.; Davies, S.J.; Park, B.U. Versions of kernel-type regression estimators. J. Amer. Statist. Assoc. 1994, 89, 825–832. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractal functions and interpolation. Constr. Approx. 1986, 2, 303–329. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractals Everywhere; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
- Marvasti, M.A.; Strahle, W.C. Fractal geometry analysis of turbulent data. Signal Process. 1995, 41, 191–201. [Google Scholar] [CrossRef]
- Mazel, D.S. Representation of discrete sequences with three-dimensional iterated function systems. IEEE Trans. Signal Process. 1994, 42, 3269–3271. [Google Scholar] [CrossRef]
- Mazel, D.S.; Hayes, M.H. Using iterated function systems to model discrete sequences. IEEE Trans. Signal Process. 1992, 40, 1724–1734. [Google Scholar] [CrossRef]
- Balasubramani, N. Shape preserving rational cubic fractal interpolation function. J. Comput. Appl. Math. 2017, 319, 277–295. [Google Scholar] [CrossRef]
- Balasubramani, N.; Guru Prem Prasad, M.; Natesan, S. Shape preserving α-fractal rational cubic splines. Calcolo 2020, 57, 21. [Google Scholar] [CrossRef]
- Barnsley, M.F.; Elton, J.; Hardin, D.; Massopust, P. Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 1989, 20, 1218–1242. [Google Scholar] [CrossRef]
- Barnsley, M.F.; Massopust, P.R. Bilinear fractal interpolation and box dimension. J. Approx. Theory 2015, 192, 362–378. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Kapoor, G.P. Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 2006, 44, 655–676. [Google Scholar] [CrossRef] [Green Version]
- Chand, A.K.B.; Navascués, M.A. Natural bicubic spline fractal interpolation. Nonlinear Anal. 2008, 69, 3679–3691. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Navascués, M.A. Generalized Hermite fractal interpolation. Rev. Real Acad. Cienc. Zaragoza 2009, 64, 107–120. [Google Scholar]
- Chand, A.K.B.; Tyada, K.R. Constrained shape preserving rational cubic fractal interpolation functions. Rocky Mt. J. Math. 2018, 48, 75–105. [Google Scholar] [CrossRef] [Green Version]
- Chand, A.K.B.; Vijender, N.; Viswanathan, P.; Tetenov, A.V. Affine zipper fractal interpolation functions. BIT Numer. Math. 2020, 60, 319–344. [Google Scholar] [CrossRef]
- Chand, A.K.B.; Viswanathan, P. A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 2013, 53, 841–865. [Google Scholar] [CrossRef]
- Chandra, S.; Abbas, S.; Verma, S. Bernstein super fractal interpolation function for countable data systems. Numer. Algorithms 2022. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, H.-Y. Construction of a class of weighted bivariate fractal interpolation functions. Fractals 2022, 30, 2250034. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Chand, A.K.B. Shape preserving rational quartic fractal functions. Fractals 2019, 27, 1950141. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Chand, A.K.B.; Kumar, G.S. A new class of rational cubic spline fractal interpolation function and its constrained aspects. Appl. Math. Comput. 2019, 346, 319–335. [Google Scholar] [CrossRef]
- Luor, D.-C. Fractal interpolation functions with partial self similarity. J. Math. Anal. Appl. 2018, 464, 911–923. [Google Scholar] [CrossRef]
- Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Massopust, P.R. Interpolation and Approximation with Splines and Fractals; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Miculescu, R.; Mihail, A.; Pacurar, C.M. A fractal interpolation scheme for a possible sizeable set of data. J. Fractal Geom. 2022. [Google Scholar] [CrossRef]
- Navascués, M.A. Fractal approximation. Complex Anal. Oper. Theory 2010, 4, 953–974. [Google Scholar] [CrossRef]
- Navascués, M.A. Fractal bases of Lp spaces. Fractals 2012, 20, 141–148. [Google Scholar] [CrossRef]
- Navascués, M.A.; Chand, A.K.B. Fundamental sets of fractal functions. Acta Appl. Math. 2008, 100, 247–261. [Google Scholar] [CrossRef]
- Navascués, M.A.; Pacurar, C.; Drakopoulos, V. Scale-free fractal interpolation. Fractal Fract. 2022, 6, 602. [Google Scholar] [CrossRef]
- Prasad, S.A. Super coalescence hidden-variable fractal interpolation functions. Fractals 2021, 29, 2150051. [Google Scholar] [CrossRef]
- Ri, S.; Drakopoulos, V. Generalized fractal interpolation curved lines and surfaces. Nonlinear Stud. 2021, 28, 427–488. [Google Scholar]
- Tyada, K.R.; Chand, A.K.B.; Sajid, M. Shape preserving rational cubic trigonometric fractal interpolation functions. Math. Comput. Simul. 2021, 190, 866–891. [Google Scholar] [CrossRef]
- Vijender, N. Fractal perturbation of shaped functions: Convergence independent of scaling. Mediterr. J. Math. 2018, 15, 211. [Google Scholar] [CrossRef]
- Viswanathan, P. A revisit to smoothness preserving fractal perturbation of a bivariate function: Self-Referential counterpart to bicubic splines. Chaos Solitons Fractals 2022, 157, 111885. [Google Scholar] [CrossRef]
- Viswanathan, P.; Chand, A.K.B. Fractal rational functions and their approximation properties. J. Approx. Theory 2014, 185, 31–50. [Google Scholar] [CrossRef]
- Viswanathan, P.; Chand, A.K.B. α-fractal rational splines for constrained interpolation. Electron. Trans. Numer. Anal. 2014, 41, 420–442. [Google Scholar]
- Viswanathan, P.; Navascués, M.A.; Chand, A.K.B. Associate fractal functions in Lp-spaces and in one-sided uniform approximation. J. Math. Anal. Appl. 2016, 433, 862–876. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Yu, J.-S. Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 2013, 175, 1–18. [Google Scholar] [CrossRef]
- Banerjee, S.; Gowrisankar, A. Frontiers of Fractal Analysis Recent Advances and Challenges; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Kumar, M.; Upadhye, N.S.; Chand, A.K.B. Linear fractal interpolation function for data set with random noise. Fractals, 2022; accepted. [Google Scholar] [CrossRef]
- Luor, D.-C. Fractal interpolation functions for random data sets. Chaos Solitons Fractals 2018, 114, 256–263. [Google Scholar] [CrossRef]
- Luor, D.-C. Statistical properties of linear fractal interpolation functions for random data sets. Fractals 2018, 26, 1850009. [Google Scholar] [CrossRef]
- Luor, D.-C. Autocovariance and increments of deviation of fractal interpolation functions for random datasets. Fractals 2018, 26, 1850075. [Google Scholar] [CrossRef]
- Luor, D.-C. On the distributions of fractal functions that interpolate data points with Gaussian noise. Chaos Solitons Fractals 2020, 135, 109743. [Google Scholar] [CrossRef]
- Caldarola, F.; Maiolo, M. On the topological convergence of multi-rule sequences of sets and fractal patterns. Soft Comput. 2020, 24, 17737–17749. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Li, H.; Shen, J.-Y. A novel hybrid fractal interpolation-SVM model for forecasting stock price indexes. Fractals 2019, 27, 1950055. [Google Scholar] [CrossRef]
- Tosatto, S.; Akrour, R.; Peters, J. An upper bound of the bias of Nadaraya-Watson kernel regression under Lipschitz assumptions. Stats 2021, 4, 1–17. [Google Scholar] [CrossRef]
k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
0.02 | −0.03 | 0.08 | −0.16 | 0.05 | −0.26 | −0.36 | −0.06 | −0.14 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luor, D.-C.; Liu, C.-W. Fractal Perturbation of the Nadaraya–Watson Estimator. Fractal Fract. 2022, 6, 680. https://doi.org/10.3390/fractalfract6110680
Luor D-C, Liu C-W. Fractal Perturbation of the Nadaraya–Watson Estimator. Fractal and Fractional. 2022; 6(11):680. https://doi.org/10.3390/fractalfract6110680
Chicago/Turabian StyleLuor, Dah-Chin, and Chiao-Wen Liu. 2022. "Fractal Perturbation of the Nadaraya–Watson Estimator" Fractal and Fractional 6, no. 11: 680. https://doi.org/10.3390/fractalfract6110680
APA StyleLuor, D. -C., & Liu, C. -W. (2022). Fractal Perturbation of the Nadaraya–Watson Estimator. Fractal and Fractional, 6(11), 680. https://doi.org/10.3390/fractalfract6110680