Next Article in Journal
New Results for Weakly Compatible (WC) and R-Weakly Commuting (RWC) Mappings with an Applicationin Dynamic Programming
Next Article in Special Issue
Starlike Functions Based on Ruscheweyh q−Differential Operator defined in Janowski Domain
Previous Article in Journal
Herglotz Variational Problems Involving Distributed-Order Fractional Derivatives with Arbitrary Smooth Kernels
Previous Article in Special Issue
Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions

by
Ramasamy Arul
1,
Panjayan Karthikeyan
2,
Kulandhaivel Karthikeyan
3,
Palanisamy Geetha
3,
Ymnah Alruwaily
4,
Lamya Almaghamsi
5 and
El-sayed El-hady
4,6,*
1
Department of Mathematics, Gnanamani College of Technology, Namakkal 637018, Tamilnadu, India
2
Department of Mathematics, Sri Vasavi College, Erode 638 316, Tamil Nadu, India
3
Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
4
Mathematics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
5
Department of Mathematics, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
6
Basic Science Department, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(12), 732; https://doi.org/10.3390/fractalfract6120732
Submission received: 15 November 2022 / Revised: 29 November 2022 / Accepted: 7 December 2022 / Published: 10 December 2022
(This article belongs to the Special Issue Fractional Operators and Their Applications)

Abstract

:
We establish sufficient conditions for the existence of solutions of an integral boundary value problem for a Ψ -Hilfer fractional integro-differential equations with non-instantaneous impulsive conditions. The main results are proved with a suitable fixed point theorem. An example is given to interpret the theoretical results. In this way, we generalize recent interesting results.

1. Introduction

There has been a lot of research completed so far on fractional differential equations (FDEs) with initial and boundary conditions (BCs). The reason for this is FDEs accurately describe many real-world phenomena such as biology, physics, chemistry, signal processing, and many more (see, e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13]). Furthermore, it should be remarked that FDEs have interesting applications in solving inverse problems, and in the modeling of heat flow in porous material (see, e.g., [14,15,16,17,18,19,20,21,22,23,24,25]).
Impulsive equations arise in fields such as engineering, biology, physics, and medicine, where objects change their state rapidly at certain points. Instantaneous impulses (InI) are known as the ones with relatively short duration of changes. On the other hand, non-instantaneous impulses (N-InI) are those in which an impulsive activity begins suddenly at some places and remains active for a set amount of time. For more details of such processes in interesting applications such as ecology and pharmacokinetics and more see, e.g., [26,27,28,29,30]. Hernandez and O’Regan in [31] pioneered N-InI differential equation. They reported that the InI cannot describe certain processes, such as the evolution of pharmacology. For some problems involving N-InI in psychology see [32]. For some recent works, on N-InI FDEs, see, e.g., [33,34,35,36,37] and references therein.
In [1], S. Asawasamrit et al. studied the Ψ -Caputo fractional derivative (FD) and N-InI BVPs. In [28], V. Gupta et al. established the FDEs with N-InI. Ψ -Hilfer FDEs with impulsive conditions was studied in [38]. In [2], M. S. Abdo et al. discussed the Ψ -Hilfer FD involving BCs. Ψ -Hilfer FD and inclusions with N-InI was established in [29].
In [26], M. I. Abbas, studied the proportional FD with respect to another function of the form
a D p , q , g ( u ) = F ( u , ( u ) , a I r , q , g ( u ) ) , u ( s i , u i + 1 ] , ( u ) = Ψ k ( u , ( u k + ) ) , u ( u i , s i ] , i = 1 , , m , I 1 p , q , g ( a ) = 0 R .
where a D p , q , g , a I r , q , g is the proportional FD and fractional integral with respect to another function and F is continuous.
In [11], C. Nuchpong et al. discussed the Hilfer FD with non-local BCs of the form
H D p , q ( u ) = F ( u , ( u ) , I δ ( u ) ) , u [ a , b ] ( a ) = 0 , a b ( s ) ds + = i = 1 m 2 ς i ( ϑ i ) .
where H D p , q - Hilfer FD and I δ - Riemann–Liouville fractional integral and the function F is continuous.
In [33], A. Salim et al. established the BVP for implicit fractional order generalized Hilfer-type FD with N-InI of the form
α D τ + p , q ( u ) = F ( u , ( u ) , α D p , q ( u ) ) , t J i , ( u ) = H i ( u , ( u ) ) , u ( u i , s i ] , i = 1 , , m , φ 1 α I a + 1 ϵ ( a ) + φ 2 α I τ + 1 ϵ ( b ) = φ 3 ,
where α D τ + p , q , α I a + 1 ϵ are the generalized Hilfer-type FD and fractional integral and the function F is continuous.
Inspired by the aforementioned works, we studied the Ψ -Hilfer fractional integro-differential equations ( Ψ -HFI-DEs) with N-InI multi-point BCs of the form (with H D p , q ; Ψ is the Ψ - Hilfer FDs of order p , 1 < p < 2 )
H D p , q ; Ψ ( t ) = F ( t , ( t ) , Ψ ( t ) ) , t ( s i , t i + 1 ] ,
( t ) = H i ( t , ( t ) ) , t ( t i , s i ] , i = 1 , , m ,
( 0 ) = 0 , ( T ) = i = 1 m ν i I ς i ( υ i ) , ν i R , υ i [ 0 , T ] ,
where 0 q 1 , ν i R , υ i [ 0 , T ] , I ς i -is Ψ -Riemann–Liouville fractional integral of order ς i > 0 and 0 = s 0 < t 1 t 2 < . . . < t m s m s m + 1 = T , - pre-fixed, F : [ 0 , T ] × R × R R and H i : [ t i , s i ] × R R is continuous. In addition, Ψ ( t ) = 0 t k ( t , s ) ( s ) ds and k C ( D , R + ) with domain D = { ( t , s ) R 2 : 0 s t T } .
Motivations:
1.
The principal motivation for this article is to introduce a new class of N-InI Ψ -HFI-DEs with multipoint BCs by using the Ψ -Hilfer FD.
2.
Krasnoselkii’s and Banach’s fixed point theorem (FPT) are used to investigate the existence and uniqueness of solutions of (1)–(3).
3.
We extend the results in [39] by including Ψ -Hilfer FD, nonlinear integral terms, and N-InI conditions.
The organization of the article is as follows: In Section 2, some essential notations, definitions, and some useful lemmas are provided. In Section 3, we used the suitable conditions for the existence and uniqueness of the solution of (1)–(3). Section 4 focuses on an application to illustrate the results.

2. Supporting Notes

Let PC ( [ 0 , T ] , R ) = : [ 0 , T ] R : C ( t k , t k + 1 ] , R be the space of continuous functions and there exists ( t k ) and ( t k + ) with ( t k ) = ( t k + ) the norm PC = sup ( t ) : 0 t T . Clearly, PC 1 ( [ 0 , T ] , R ) endued with norm . PC 1 . See [40] for the notion of the Riemann–Liouville fractional integral and derivative of order p > 0 .
Definition 1
([41]). The fractional integrals and FDs for a function F ’s with regard to Ψ are defined as:
I p ; Ψ F ( u ) = 1 Γ ( p ) 0 u Ψ ( s ) ( Ψ ( u ) Ψ ( s ) ) p 1 F ( s ) d s ,
and
D p ; Ψ F ( u ) = 1 Γ ( n p ) ( 1 Ψ ( u ) d du ) n 0 u Ψ ( s ) ( Ψ ( u ) Ψ ( s ) ) n p 1 F ( s ) ds ,
respectively.
Definition 2
([2]). For n N , let n 1 < p < n and F PC ( [ a , b ] , R ) . The Ψ-Hilfer FD of order p and type 0 q 1 for a function F H D p , q ; Ψ ( . ) is defined as
H D p , q ; Ψ F ( t ) = I q ( n p ; Ψ 1 Ψ ( t ) d dt n I ( 1 q ) ( n p ; Ψ F ( t ) .
Lemma 1
([2]). Assume p , ι , δ > 0 . Then,
( i ) I p ; Ψ I ι ; Ψ h ( t ) = I p + ι ; Ψ h ( t ) , ( i i ) I p ; Ψ ( Ψ ( t ) Ψ ( 0 ) ) δ 1 = Γ ( δ ) Γ ( p + δ ) ( Ψ ( t ) Ψ ( 0 ) ) p + δ 1 .
Note: H D p , q ; Ψ ( Ψ ( t ) Ψ ( 0 ) ) γ 1 = 0 .
Lemma 2
([2]). Suppose n N , let F L ( a , b ) , n 1 < p n , 0 q 1 , γ = p + nq pq , I ( n p ) ( 1 q ) F AC k [ a , b ] . Then
( I p ; Ψ ; Ψ H D p , q ; Ψ F ) ( t ) = F ( t ) k = 1 n ( Ψ ( t ) Ψ ( 0 ) Γ ( γ k + 1 ) F Ψ [ n k ] l i m t a + ( I ( n p ) ( 1 q ) ; Ψ F ) ( t ) ,
where F Ψ [ n k ] = 1 Ψ ( t ) d dt n k F ( t ) .
Lemma 3.
A function PC ( [ 0 , T ] , R ) given by,
( t ) =
H i ( s m ) + 1 Γ ( p ) a t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 ω ( s ) ds + ( Ψ ( t ) Ψ ( 0 ) ) γ 1 Δ Γ ( p ) i = 1 m ν i 0 υ i Ψ ( t ) ( Ψ ( υ i ) Ψ ( s ) ) p 1 ω ( s ) ds , t [ 0 , t 1 ] , H i ( t ) , t ( t i , s i ] , i = 1 , 2 , , m , H i ( s i ) + 1 Γ ( p ) 0 t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 ω ( s ) ds 1 Γ ( p ) 0 s i Ψ ( s ) ( Ψ s i Ψ s ) p 1 ω ( s ) ds , t ( s i , t i + 1 ] , i = 1 , 2 , , m .
is a solution of the system
H D p , q ; Ψ ( t ) = ω ( t ) t ( s i , t i + 1 ] [ 0 , T ] , 0 < p < 1 , ( t ) = H i ( t ) , t ( t i , s i ] , i = 1 , , m , ( 0 ) = 0 , ( T ) = i = 1 m ν i I ς i ( υ i ) .
Proof. 
Assume that ( t ) is satisfies for Equation (4). Integrating the first equation of ( 4 ) for t [ 0 , t 1 ] , to obtain
( t ) = ( T ) + 1 Γ ( p ) 0 t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 ω ( s ) ds .
Now, if t ( s i , t i + 1 ] , i = 1 , 2 , , m and again integrating the first equation of (4), we have
( t ) = ( s i ) + 1 Γ ( p ) s i t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 ω ( s ) ds .
Now, we apply impulsive condition, ( t ) = H i ( t ) , t ( t i , s i ] , we obtain
( s i ) = H i ( s i ) .
Consequently, from (7) and (8), we obtain
( t ) = H i ( s i ) + 1 Γ ( p ) 0 t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 ω ( s ) ds .
and
( t ) = H i ( s i ) + 1 Γ ( p ) 0 t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 ω ( s ) ds 1 Γ ( p ) 0 s i ( Ψ ( s ) Ψ s i Ψ s ) p 1 ω ( s ) ds .
Now, we prove that satisfies the BCs (4). Obviously ( 0 ) = 0 .
i = 1 m ν i I φ i ( υ i ) = i = 1 m ν i I α + φ i ω ( υ i ) + i = 1 m ν i ( Ψ ( t ) Ψ ( 0 ) ) p 1 Δ Γ ( γ ) i = 1 m ν i I p + φ i ; Ψ ω ( υ i ) I α ; Ψ ω ( b ) = I p ; Ψ ω ( T ) + ( Ψ ( t ) Ψ ( 0 ) ) γ 1 Δ i = 1 m ν i I p + φ i ; Ψ ω ( υ i ) = ( T )
Hence, by using the FDs, integral definitions, and Lemmas. Now it’s clear that (6),(10), and (11) ⇒ (4).
where
Δ = ( Ψ ( t ) Ψ ( 0 ) ) γ 1 i = 1 m ν i ( Ψ ( υ i ) Ψ ( 0 ) ) γ 1 0 .
FPT plays a crucial role in many interesting results see, e.g., [12,13,42].
Theorem 4
([43]). (Banach FPT)
If C is a closed nonempty subset of a Banach space (BSp.) B . Let N : C C , be a contraction mapping, then N has a unique FP.
Theorem 5
([44]). (Krasnoselkii’s FPT)
Let K be a closed, convex, and nonempty subset of a BSp. X . Suppose Q , R are two operators satisfying:
(i) Q x + R y K for any x , y K .
(ii) Q is completely continuous and contraction operator.
(iii) R is a contraction mapping. Then ∃ at least one FP z 1 K : z 1 = Q z 1 + R z 1 .

3. Main Results

We use this section to present our results. We employ two known FPT to investigate the existence and uniqueness of solutions of (1)–(3).
Theorem 6.
Assume the following assumption holds.
( Al 1 ) : positive constants L , G , M , L h i :
F ( t , 1 , ω 1 ) F ( t , 2 , ω 2 ) L 1 2 + G ω 1 ω 2 , for t [ 0 , T ] , 1 , 2 , ω 1 , ω 2 R . k ( t , s , ϑ ) k ( t , s , ν ) M ϑ ν , f o r t [ t i , s i ] ϑ , ν R . H i ( t , v 1 ) H i ( t , v 2 ) L h i v 1 v 2 , f o r v 1 , v 2 R .
If
Z : max { max i = 1 , 2 , , m L h i + ( L + GM ) Γ ( p + 1 ) ( t i + 1 p + s i p ) , L h i + ( L + GM ) { ( Ψ ( t ) Ψ ( 0 ) ) p Γ ( p + 1 ) + ( Ψ ( t ) Ψ ( 0 ) ) γ 1 Δ Γ ( γ ) i = 1 m ν i ( Ψ ( υ i ) Ψ ( 0 ) ) p + φ i ; Ψ Γ ( p + φ i + 1 ) } } < 1 ,
then the problem (1)–(3) has a unique solution on [ 0 , T ] .
Proof. 
Expound the operator N : PC ( [ 0 , T ] , R ) PC ( [ 0 , T ] , R ) by
( N ) ( t ) = H m ( s m , ( s m ) ) + 1 Γ ( p ) 0 t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 F ( s , ( s ) , B ( s ) ) ds + ( Ψ ( t ) Ψ ( 0 ) ) γ 1 Δ i = 1 m ν i 0 υ i Ψ ( t ) ( Ψ ( υ i ) Ψ ( s ) ) p 1 F ( υ i , ( υ i ) , B ( υ i ) , t [ 0 , t 1 ] , H i ( t ) , t ( t i , s i ] , i = 1 , 2 , , m , H i ( s i ) + 1 Γ ( p ) 0 t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 F ( s , ( s ) , B ( s ) ) ds 1 Γ ( p ) 0 s i Ψ ( s ) ( Ψ s i Ψ s ) p 1 F ( s , ( s ) , B ( s ) ) ds , t ( s i , t i + 1 ] , i = 1 , 2 , , m .
Clearly N is well defined and N PC ( [ 0 , T ] , R ) . We now prove that N is a contraction.
Case:1. When , ¯ PC ( [ 0 , T ] , R ) and t [ 0 , t 1 ] , we obtain
( N ) ( t ) ( N ¯ ) ( t ) L h i + ( L + GM ) { ( Ψ ( t ) Ψ ( 0 ) ) p Γ ( p + 1 ) + ( Ψ ( t ) Ψ ( 0 ) ) γ 1 Δ Γ ( γ ) i = 1 m ν i ( Ψ ( υ i ) Ψ ( 0 ) ) p + φ i ; Ψ Γ ( p + φ i + 1 ) } ¯ PC .
Case:2. When t ( t i , s i ] , we obtain
( N ) ( t ) ( N ¯ ) ( t ) H i ( t , ( t ) ) H i ( t , ¯ ( t ) ) L h i ¯ PC .
Case:3. When t ( s i , t i + 1 ] , we obtain
( N ) ( t ) ( N ¯ ) ( t ) H i ( s i , ( s i ) H i ( s i , ¯ ( s i ) + 1 Γ ( p ) 0 t ( t s ) p 1 F ( s , ( s ) , B ( s ) ) F ( s , ( s ) , B ( s ) ) ds + 1 Γ ( p ) 0 s i ( s i s ) p 1 F ( s , ( s ) , B ( s ) ) F ( s , ( s ) , B ( s ) ) ds , L h i + ( L + GM ) Γ ( p + 1 ) ( t i + 1 p + s i p ) ¯ PC .
Therefore N is a contraction as in the above inequality
Z = L h i + ( L + GM ) Γ ( p + 1 ) ( t i + 1 p + s i p ) < 1 .
Thus, the (1)–(3) problem has a unique solution ∀ PC ( [ 0 , T ] , R ) . □
Theorem 7.
Let condition ( Al 1 ) be satisfied and the following assumption holds:
( Al 2 ) : a constant L g i > 0 :
F ( t , W 1 , ω 1 ) L g i ( 1 + W 1 + ω 1 ) , t [ s i , t i + 1 ] , W 1 , ω 1 R .
( Al 3 ) : a function κ i ( t ) , i = 1 , 2 , , m :
H i ( t , W 1 , ω 1 ) κ i ( t ) , t [ t i , s i ] , W 1 , ω 1 R .
Assume that M i : sup t [ t i , s i ] κ i ( t ) < , and K : = max L h i < 1 , for all i = 1 , 2 , . . , m . Then the (1)–(3) problem has at least one solution on [ 0 , T ] .
Proof. 
Suppose that B p , r = { PC ( [ 0 , T ] , R ) : PC r } . Let Q and R be two operators on B p , r defined as follows:
Q ( t ) = H m ( s m , ( s m ) ) , t [ 0 , t 1 ] , H i ( t , ( t ) ) , t ( t i , s i ] , i = 1 , 2 , , m , H i ( s i , ( s i ) ) , t ( s i , t i + 1 ] , i = 1 , 2 , , m .
and
R ( t ) = 1 Γ ( p ) a t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 F ( s , ( s ) , B ( s ) ) ds + ( Ψ ( t ) Ψ ( 0 ) ) γ 1 Δ i = 1 m ν i 0 υ i Ψ ( t ) ( Ψ ( υ i ) Ψ ( s ) ) p 1 F ( υ i , ( υ i ) , B ( υ i ) , t [ 0 , t 1 ] , 0 , t ( t i , s i ] , i = 1 , 2 , , m , 1 Γ ( p ) 0 t Ψ ( s ) ( Ψ ( t ) Ψ ( s ) ) p 1 F ( s , ( s ) , B ( s ) ) ds 1 Γ ( p ) 0 s i Ψ ( s ) ( Ψ s ( i ) Ψ ( s ) ) p 1 F ( s , ( s ) , B ( s ) ) ds , t ( s i , t i + 1 ] , i = 1 , 2 , , m .
step.1 For B p , r then Q + R B p , r .
case.1 For t [ 0 , t 1 ] ,
Q + R ¯ H m ( s m , ( s m ) ) + 1 Γ ( p ) 0 t ( t s ) p 1 F ( s , ( s ) , B ( s ) ) ds + ( Ψ ( t ) Ψ ( 0 ) ) γ 1 Δ i = 1 m ν i 0 υ i Ψ ( t ) ( Ψ ( υ i ) Ψ ( s ) ) p 1 F ( υ i , ( υ i ) , B ( υ i ) d υ i , [ L h i + ( L + GM ) { ( Ψ ( t ) Ψ ( 0 ) ) p Γ ( p + 1 ) + ( Ψ ( t ) Ψ ( 0 ) ) γ 1 Δ Γ ( γ ) i = 1 m ν i ( Ψ ( υ i ) Ψ ( 0 ) ) p + φ i ; Ψ Γ ( p + φ i + 1 ) } ] ( 1 + r ) r .
case:2 ∀ t ( t i , s i ] ,
Q + R ¯ H i ( t , W 1 ( t ) ) M i .
case:3. ∀ t ( s i , t i + 1 ] ,
Q + R ¯ ( t ) H i ( s i , ( s i ) ) + 1 Γ ( p ) 0 t ( t s ) p 1 F ( s , ( s ) , B ( s ) ) ds + 1 Γ ( p ) 0 s i ( s i s ) p 1 F ( s , ( s ) , B ( s ) ) ds , M i + L g i ( s i p + t i + 1 p ) Γ ( p + 1 ) ( 1 + r ) r .
Thus,
Q + R B p , r .
step:2 Q is contraction on B p , r .
case:1. 1 , 2 B p , r then t [ 0 , t 1 ] ,
Q 1 ( t ) Q 2 ( t ) L g m 1 ( s m ) 2 ( s m ) L g m 1 2 PC .
case:2. ∀ t ( t i , s i ] , i = 1 , 2 , , m ,
Q 1 ( t ) Q 2 ( t ) L g i 1 2 PC .
case:3. For t ( s i , t i + 1 ] ,
Q 1 ( t ) Q 2 ( t ) L g i 1 2 PC .
We can deduce the following from the above inequalities:
Q 1 ( t ) Q 2 ( t ) K 1 2 PC .
Hence, Q is a contraction.
step:3. We prove that R is continuous.
Assume n be a ∋ n ¯ sequence in PC ( [ 0 , T ] , R ) .
case:1. ∀ t [ 0 , t 1 ] ,
Q n ( t ) Q ( t ) ( Ψ ( t ) Ψ ( 0 ) ) p Γ ( p + 1 ) + ( Ψ ( t ) Ψ ( 0 ) ) γ 1 Δ Γ ( γ ) i = 1 m ν i ( Ψ ( υ i ) Ψ ( 0 ) ) p + φ i ; Ψ Γ ( p + φ i + 1 ) F ( . , n ( . ) , . , ) F ( . , ( . ) , . , ) PC .
case:2. ∀ t ( t i , s i ] , we obtain
Q n ( t ) Q ( t ) = 0 .
case:3. ∀ t ( s i , t i + 1 ] , i = 1 , 2 , , m ,
Q n ( t ) Q ( t ) ( t i + 1 s i ) Γ ( p + 1 ) F ( . , n ( . ) , . , ) F ( . , ( . ) , . , ) PC .
Thus, we conclude from the above cases that Q n ( t ) Q ( t ) PC 0 as n .
step:4. We prove that Q is compact.
First Q is uniformly bounded on B p , r .
Since Q L g i ( T ) Γ ( 1 + p ) < r ,
First Q is uniformly bounded on B p , r . We prove that Q maps a bounded set to a B p , r equicontinuous set.
case:1. For interval t [ 0 , t 1 ] , 0 E 1 E 2 t 1 , B r , we obtain
Q E 2 Q E 1 L g i ( 1 + r ) Γ ( p + 1 ) ( E 2 E 1 ) .
case:2. ∀ t ( t i , s i ] , t i < E 1 < E 2 s i , B p , r , we obtain
Q E 2 Q E 1 = 0 .
case:3. ∀ t ( s i , t i + 1 ] , s i < E 1 < E 2 t i + 1 , B p , r , we establish
Q E 2 Q E 1 L g i ( 1 + r ) Γ ( p + 1 ) ( E 2 E 1 ) .
From the above cases, we obtain Q E 2 Q E 1 0 as E 2 E 1 and Q is equicontinuous. As a result, Q ( B p , r ) is relatively compact, and Q is compact using the Ascoli–Arzela theorem (see, e.g., [45]). Hence the (1)–(3) problems have at least one fixed point on [ 0 , T ] . □

4. Example

Consider the Ψ -Hlifer fractional BVP,
D p , q ; Ψ ( u ) = e u w 9 + e u ( 1 + ) + 1 3 0 u e ( s u ) ( s ) ds , u ( 0 , 1 ] ,
( u ) = ( u ) 2 ( 1 + ( u ) ) , u ( 1 2 , 1 ] ,
( 0 ) = 0 , ( 1 ) = 1 2 I 2 3 2 7 + 2 3 I 4 5 5 9 + 2 5 I 3 4 1 7 ,
and L = G = 1 10 , M = 1 3 , p = 5 7 γ = 2 5 , L h 1 = 1 3 , ν 1 = 1 2 , ν 2 = 2 3 , ν 3 = 2 5 , υ 1 = 2 7 , υ 2 = 5 9 , υ 3 = 1 7 , φ 1 = 2 3 , φ 2 = 4 5 , φ 3 = 3 4 . We shall check that condition (12) of Theorem 6 for p ( 1 , 2 ) . By using theorem 6, we determine that (with m = 3 )
L h i + ( L + GM ) Γ ( p + 1 ) ( u i + 1 p + s i p ) 0.41 < 1 . a n d L h i + ( L + GM ) { ( Ψ ( u ) Ψ ( 0 ) ) p Γ ( p + 1 ) + ( Ψ ( u ) Ψ ( 0 ) ) γ 1 Δ Γ ( γ ) i = 1 m ν i ( Ψ ( υ i ) Ψ ( 0 ) ) p + φ i ; Ψ Γ ( p + φ i + 1 ) } 0.485 < 1 .
Hence, in view of Theorem 6 the problem (13)–(15) has a unique solution [ 0 , T ] . This example illustrates the obtained results.

5. Conclusions

In this paper, we discussed a new class of nonlinear Ψ HFI-DE with NInI Conditions. Existence and uniqueness results are established. Banach’s FPT is employed to show the uniqueness results, while Krasnoselskii’s FPT is used to analyze the existence results. At the end, an example is presented to demonstrate the consistency of the findings. Potential future work could be to develop a numerical algorithm for the R-L IBVPs with different types of FDs. Moreover, we plan to investigate our results based on other FDs such as, e.g., Katugampola derivative, Abu-Shady–Kaabar FD, and conformable derivative.

Author Contributions

Conceptualization, R.A., P.K., K.K., P.G., Y.A., L.A., and E.-s.E.-h.; methodology, R.A., P.K., K.K., and P.G.; software, R.A., P.K., K.K., Y.A., L.A., and E.-s.E.-h.; validation, R.A., P.K., K.K., Y.A., L.A., and E.-s.E.-h.; formal analysis, R.A., P.K., K.K., and P.G.; investigation, R.A., P.K., K.K., Y.A., L.A., and E.-s.E.-h.; data curation, R.A., P.K., K.K., Y.A., L.A., and E.-s.E.-h.; writing—original draft preparation, R.A., P.K., K.K., and P.G.; writing—review and editing, R.A., P.K., K.K., Y.A., L.A., and E.-s.E.-h.; visualization, R.A., P.K., K.K., P.G., Y.A., L.A., and E.-s.E.-h.; supervision, K.K.; project administration, R.A., P.K., K.K., Y.A., L.A., and E.-s.E.-h. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not Applicable.

Informed Consent Statement

Not Applicable.

Data Availability Statement

Not Applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Asawasamrit, S.; Thadang, Y.; Ntouyas, S.K.; Tariboon, J. Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary conditions. Axioms 2021, 10, 130. [Google Scholar] [CrossRef]
  2. Abdo, M.S.; Pancha, S.K. Fractional Integro-Differential Equations Involving Ψ-Hilfer Fractional Derivative. Adv. Appl. Math. Mech. 2019, 11, 338–359. [Google Scholar]
  3. Anguraj, A.; Karthikeyan, P.; Rivero, M.; Trujillo, J.J. On new existence results for fractional integro-differential equations with impulsive and integral conditions. Comput. Math. Appl. 2014, 66, 2587–2594. [Google Scholar] [CrossRef]
  4. Agarwal, R.; Hristova, S.; O’Regan, D. Non-instantaneous impulses in Caputo fractional differential equations. Fract. Calc. Appl. Anal. 2017, 20, 1–28. [Google Scholar] [CrossRef]
  5. Abdo, M.S.; Pamchal, S.K.; Saeed, A.M. Fractional boundary value problem with Ψ-Caputo fractional derivative. Proc. Indian Acad. Sci. Sci. 2019, 65, 1–14. [Google Scholar] [CrossRef]
  6. Kailasavalli, S.; MallikaArjunan, M.; Karthikeyan, P. Existence of solutions for fractional boundary value problems involving integro-differential equations in banach spaces. Nonlinear Stud. 2015, 22, 341–358. [Google Scholar]
  7. Karthikeyan, K.; Karthikeyan, P.; Baskonus, H.M.; Ming-Chu, Y.; Venkatachalam, K. Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations. Math. Methods Appl. Sci. 2022, 45, 8045–8059. [Google Scholar] [CrossRef]
  8. Karthikeyan, K.; Debbouche, A.; Torres, D.F.M. Analysis of Hilfer fractional integro-differential equations with almost sectorial operators. Fractal Fract. 2021, 5, 22. [Google Scholar] [CrossRef]
  9. Karthikeyan, K.; Karthikeyan, P.; Chalishajar, D.N.; Raja, D.S. Analysis on Ψ-Hilfer Fractional Impulsive Differential Equations. Symmetry 2021, 13, 1895. [Google Scholar] [CrossRef]
  10. Karthikeyan, P.; Venkatachalam, K. Existence results for fractional impulsive integro differential equations with integral conditions of Katugampola type. Acta Math. Univ. Comen. 2021, 90, 1–15. [Google Scholar]
  11. Nuchpong, C.; Ntouyas, S.K.; Tariboon, J. Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions. Open Math. 2020, 18, 1879–1894. [Google Scholar] [CrossRef]
  12. El-hady, E.; Makhlouf, A.B. A novel stability analysis for the Darboux problem of partial differential equations via fixed point theory. AIMS Math. 2021, 6, 12894–12901. [Google Scholar] [CrossRef]
  13. Makhlouf, B.; Abdellatif; El-Hady, E. Novel stability results for Caputo fractional differential equations. Math. Probl. Eng. 2021, 2021, 9817668. [Google Scholar] [CrossRef]
  14. Brociek, R.; Chmielowska, A.; Słota, D. Parameter Identification in the Two-Dimensional Riesz Space Fractional Diffusion Equation. Fractal Fract. 2020, 4, 39. [Google Scholar] [CrossRef]
  15. Brociek, R.; Wajda, A.; Lo Sciuto, G.; Słota, D.; Capizzi, G. Computational Methods for Parameter Identification in 2D Fractional System with Riemann-Liouville Derivative. Sensors 2022, 22, 3153. [Google Scholar] [CrossRef]
  16. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  17. Podlubny, I. Fractional Differential Equations; Acadamic Press: San Diego, CA, USA, 1999. [Google Scholar]
  18. Subashini, R.; Ravichandran, C.; Jothimani, K.; Baskonus, H.M. Existence results of Hilfer integro-differential equations with fractional order. Am. Inst. Math. Sci. 2020, 13, 911–923. [Google Scholar] [CrossRef] [Green Version]
  19. Phuangthong, N.; Ntouyas, S.K.; Tariboon, J.; Nonlaopon, K. Nonlocal Sequential Boundary Value Problems for Hilfer Type Fractional Integro-Differential Equations and Inclusions. Mathematics 2021, 9, 615. [Google Scholar] [CrossRef]
  20. Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for Ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [Google Scholar] [CrossRef]
  21. Sudsutad, W.; Thaiprayoon, C.; Ntouyas, S.K. Existence and stability results for Ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. Aims Math. 2021, 6, 4119–4141. [Google Scholar] [CrossRef]
  22. Wang, Y.; Liang, S.; Wang, Q. Existence results for fractional differential equations with integral and multipoint boundary conditions. Bound. Value Probl. 2018, 4, 2–11. [Google Scholar]
  23. Yu, X. Existence and β-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses. Adv. Differ. Equations 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
  24. Zhang, X.; Agarwal, P.; Liu, Z.; Zhang, X.; Ding, W.; Ciancio, A. On the fractional differential equations with not instantaneous impulses. Open Phys. 2016, 14, 676–684. [Google Scholar] [CrossRef]
  25. Brociek, R.; Slota, D.; Król, M.; Matula, G.; Kwaśny, W. Modeling of heat distribution in porous aluminum using fractional differential equation. Fractal Frctional 2017, 1, 17. [Google Scholar] [CrossRef] [Green Version]
  26. Abbas, M.I. Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function. Math. Methods Appl. Sci. 2021, 44, 10432–10447. [Google Scholar] [CrossRef]
  27. Aissani, K.; Benchohra, M.; Benkhettou, N. On fractional integro-differential equations with state-dependent delay and non-instantaneous impulses. Cubo Math. J. 2019, 21, 61–75. [Google Scholar] [CrossRef] [Green Version]
  28. Gupta, V.; Dabas, J. Nonlinear fractional boundary value problem with not-instantaneous impulse. AIMS Math. 2020, 2, 365–376. [Google Scholar] [CrossRef]
  29. Ibrahim, A.G.; Elmandouh, A.A. Existence and stability of solutions of Ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Math. 2021, 6, 10802–10832. [Google Scholar] [CrossRef]
  30. Long, C.; Xie, J.; Chen, G.; Luo, D. Integral boundary value problem for fractional order Differential equations with non-instantaneous impulses. Int. J. Math. Anal. 2020, 14, 251–266. [Google Scholar] [CrossRef]
  31. Hernandez, E.; O’Regan, D. On a new class of abstract impulsive differential equation. Proc. Am. Math. Soc. 2013, 141, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
  32. Terzieva, R. Some phenomena for non-instantaneous impulsive differential equations. Int. J. Pure Appl. Math. 2018, 119, 483–490. [Google Scholar]
  33. Salim, A.; Benchohra, M.; Graef, J.R.; Lazreg, J.E. Boundary value problem for fractional order generalized Hilfer-type fractional derivative with non-instantaneous impulses. Fractal Fract. 2021, 5, 1–22. [Google Scholar] [CrossRef]
  34. Yang, D.; Wang, J. Integral boundary value problems for nonlinear non-instantaneous impulsive differential equations. J. Appl. Math. Comput. 2016, 55, 1–20. [Google Scholar] [CrossRef]
  35. Zada, A.; Ali, S.; Li, Y. Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition. Adv. Differ. Equ. 2017, 2017, 1–27. [Google Scholar] [CrossRef] [Green Version]
  36. Zada, A.; Ali, S. Stability of integral Caputo type boundary value problem with non instantaneous impulses. Int. J. Appl. Comput. Math. 2019, 5, 1–18. [Google Scholar] [CrossRef]
  37. Zada, A.; Ali, N.; Riaz, U. Ulam’s stability of multi-point implicit boundary value problems with non-instantaneous impulses. Boll. Dell’ Unione Mat. Ital. 2020, 13, 305–328. [Google Scholar] [CrossRef]
  38. Kucchea, K.D.; Kharadea, J.P.; Sousa, J.V.d. On the nonlinear impulsive Ψ-Hilfer fractional differential equations. Math. Model. Anal. 2020, 25, 642–660. [Google Scholar] [CrossRef]
  39. Asawasamrit, S.; Kijjathanakorn, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for hilfer fractional differential equations. Bull. Korean Math. Soc. 2018, 55, 1639–1657. [Google Scholar]
  40. Mahmudov, N.; Emin, S. Fractional-order boundary value problems with katugampola fractional integral conditions. Adv. Differ. Equations 2018, 81, 1–17. [Google Scholar] [CrossRef] [Green Version]
  41. Sousa, J.V.d.; de Oliveira, E.C. A Gronwall inequality and the Cauchy-type problem by means of Ψ-Hilfer operator. Differ. Equations Appl. 2017, 1, 87–106. [Google Scholar]
  42. El-hady, E.S.; Ben Makhlouf, A.; Boulaaras, S.; Mchiri, L. Ulam-Hyers-Rassias Stability of Nonlinear Differential Equations with Riemann-Liouville Fractional Derivative. J. Funct. Spaces 2022, 2022. [Google Scholar] [CrossRef]
  43. Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
  44. Burton, T.A. A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
  45. Green, J.W.; Valentine, F.A. On the arzela-ascoli theorem. Math. Mag. 1961, 34, 199–202. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Arul, R.; Karthikeyan, P.; Karthikeyan, K.; Geetha, P.; Alruwaily, Y.; Almaghamsi, L.; El-hady, E.-s. On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions. Fractal Fract. 2022, 6, 732. https://doi.org/10.3390/fractalfract6120732

AMA Style

Arul R, Karthikeyan P, Karthikeyan K, Geetha P, Alruwaily Y, Almaghamsi L, El-hady E-s. On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions. Fractal and Fractional. 2022; 6(12):732. https://doi.org/10.3390/fractalfract6120732

Chicago/Turabian Style

Arul, Ramasamy, Panjayan Karthikeyan, Kulandhaivel Karthikeyan, Palanisamy Geetha, Ymnah Alruwaily, Lamya Almaghamsi, and El-sayed El-hady. 2022. "On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions" Fractal and Fractional 6, no. 12: 732. https://doi.org/10.3390/fractalfract6120732

APA Style

Arul, R., Karthikeyan, P., Karthikeyan, K., Geetha, P., Alruwaily, Y., Almaghamsi, L., & El-hady, E. -s. (2022). On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions. Fractal and Fractional, 6(12), 732. https://doi.org/10.3390/fractalfract6120732

Article Metrics

Back to TopTop