On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions
Abstract
:1. Introduction
- 1.
- The principal motivation for this article is to introduce a new class of N-InI -HFI-DEs with multipoint BCs by using the -Hilfer FD.
- 2.
- Krasnoselkii’s and Banach’s fixed point theorem (FPT) are used to investigate the existence and uniqueness of solutions of (1)–(3).
- 3.
- We extend the results in [39] by including -Hilfer FD, nonlinear integral terms, and N-InI conditions.
2. Supporting Notes
3. Main Results
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asawasamrit, S.; Thadang, Y.; Ntouyas, S.K.; Tariboon, J. Non-instantaneous impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary conditions. Axioms 2021, 10, 130. [Google Scholar] [CrossRef]
- Abdo, M.S.; Pancha, S.K. Fractional Integro-Differential Equations Involving Ψ-Hilfer Fractional Derivative. Adv. Appl. Math. Mech. 2019, 11, 338–359. [Google Scholar]
- Anguraj, A.; Karthikeyan, P.; Rivero, M.; Trujillo, J.J. On new existence results for fractional integro-differential equations with impulsive and integral conditions. Comput. Math. Appl. 2014, 66, 2587–2594. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Non-instantaneous impulses in Caputo fractional differential equations. Fract. Calc. Appl. Anal. 2017, 20, 1–28. [Google Scholar] [CrossRef]
- Abdo, M.S.; Pamchal, S.K.; Saeed, A.M. Fractional boundary value problem with Ψ-Caputo fractional derivative. Proc. Indian Acad. Sci. Sci. 2019, 65, 1–14. [Google Scholar] [CrossRef]
- Kailasavalli, S.; MallikaArjunan, M.; Karthikeyan, P. Existence of solutions for fractional boundary value problems involving integro-differential equations in banach spaces. Nonlinear Stud. 2015, 22, 341–358. [Google Scholar]
- Karthikeyan, K.; Karthikeyan, P.; Baskonus, H.M.; Ming-Chu, Y.; Venkatachalam, K. Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations. Math. Methods Appl. Sci. 2022, 45, 8045–8059. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Debbouche, A.; Torres, D.F.M. Analysis of Hilfer fractional integro-differential equations with almost sectorial operators. Fractal Fract. 2021, 5, 22. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Karthikeyan, P.; Chalishajar, D.N.; Raja, D.S. Analysis on Ψ-Hilfer Fractional Impulsive Differential Equations. Symmetry 2021, 13, 1895. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Venkatachalam, K. Existence results for fractional impulsive integro differential equations with integral conditions of Katugampola type. Acta Math. Univ. Comen. 2021, 90, 1–15. [Google Scholar]
- Nuchpong, C.; Ntouyas, S.K.; Tariboon, J. Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions. Open Math. 2020, 18, 1879–1894. [Google Scholar] [CrossRef]
- El-hady, E.; Makhlouf, A.B. A novel stability analysis for the Darboux problem of partial differential equations via fixed point theory. AIMS Math. 2021, 6, 12894–12901. [Google Scholar] [CrossRef]
- Makhlouf, B.; Abdellatif; El-Hady, E. Novel stability results for Caputo fractional differential equations. Math. Probl. Eng. 2021, 2021, 9817668. [Google Scholar] [CrossRef]
- Brociek, R.; Chmielowska, A.; Słota, D. Parameter Identification in the Two-Dimensional Riesz Space Fractional Diffusion Equation. Fractal Fract. 2020, 4, 39. [Google Scholar] [CrossRef]
- Brociek, R.; Wajda, A.; Lo Sciuto, G.; Słota, D.; Capizzi, G. Computational Methods for Parameter Identification in 2D Fractional System with Riemann-Liouville Derivative. Sensors 2022, 22, 3153. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Acadamic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Subashini, R.; Ravichandran, C.; Jothimani, K.; Baskonus, H.M. Existence results of Hilfer integro-differential equations with fractional order. Am. Inst. Math. Sci. 2020, 13, 911–923. [Google Scholar] [CrossRef] [Green Version]
- Phuangthong, N.; Ntouyas, S.K.; Tariboon, J.; Nonlaopon, K. Nonlocal Sequential Boundary Value Problems for Hilfer Type Fractional Integro-Differential Equations and Inclusions. Mathematics 2021, 9, 615. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for Ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [Google Scholar] [CrossRef]
- Sudsutad, W.; Thaiprayoon, C.; Ntouyas, S.K. Existence and stability results for Ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. Aims Math. 2021, 6, 4119–4141. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, S.; Wang, Q. Existence results for fractional differential equations with integral and multipoint boundary conditions. Bound. Value Probl. 2018, 4, 2–11. [Google Scholar]
- Yu, X. Existence and β-Ulam-Hyers stability for a class of fractional differential equations with non-instantaneous impulses. Adv. Differ. Equations 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Agarwal, P.; Liu, Z.; Zhang, X.; Ding, W.; Ciancio, A. On the fractional differential equations with not instantaneous impulses. Open Phys. 2016, 14, 676–684. [Google Scholar] [CrossRef]
- Brociek, R.; Slota, D.; Król, M.; Matula, G.; Kwaśny, W. Modeling of heat distribution in porous aluminum using fractional differential equation. Fractal Frctional 2017, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.I. Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function. Math. Methods Appl. Sci. 2021, 44, 10432–10447. [Google Scholar] [CrossRef]
- Aissani, K.; Benchohra, M.; Benkhettou, N. On fractional integro-differential equations with state-dependent delay and non-instantaneous impulses. Cubo Math. J. 2019, 21, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Dabas, J. Nonlinear fractional boundary value problem with not-instantaneous impulse. AIMS Math. 2020, 2, 365–376. [Google Scholar] [CrossRef]
- Ibrahim, A.G.; Elmandouh, A.A. Existence and stability of solutions of Ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Math. 2021, 6, 10802–10832. [Google Scholar] [CrossRef]
- Long, C.; Xie, J.; Chen, G.; Luo, D. Integral boundary value problem for fractional order Differential equations with non-instantaneous impulses. Int. J. Math. Anal. 2020, 14, 251–266. [Google Scholar] [CrossRef]
- Hernandez, E.; O’Regan, D. On a new class of abstract impulsive differential equation. Proc. Am. Math. Soc. 2013, 141, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Terzieva, R. Some phenomena for non-instantaneous impulsive differential equations. Int. J. Pure Appl. Math. 2018, 119, 483–490. [Google Scholar]
- Salim, A.; Benchohra, M.; Graef, J.R.; Lazreg, J.E. Boundary value problem for fractional order generalized Hilfer-type fractional derivative with non-instantaneous impulses. Fractal Fract. 2021, 5, 1–22. [Google Scholar] [CrossRef]
- Yang, D.; Wang, J. Integral boundary value problems for nonlinear non-instantaneous impulsive differential equations. J. Appl. Math. Comput. 2016, 55, 1–20. [Google Scholar] [CrossRef]
- Zada, A.; Ali, S.; Li, Y. Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition. Adv. Differ. Equ. 2017, 2017, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Zada, A.; Ali, S. Stability of integral Caputo type boundary value problem with non instantaneous impulses. Int. J. Appl. Comput. Math. 2019, 5, 1–18. [Google Scholar] [CrossRef]
- Zada, A.; Ali, N.; Riaz, U. Ulam’s stability of multi-point implicit boundary value problems with non-instantaneous impulses. Boll. Dell’ Unione Mat. Ital. 2020, 13, 305–328. [Google Scholar] [CrossRef]
- Kucchea, K.D.; Kharadea, J.P.; Sousa, J.V.d. On the nonlinear impulsive Ψ-Hilfer fractional differential equations. Math. Model. Anal. 2020, 25, 642–660. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Kijjathanakorn, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for hilfer fractional differential equations. Bull. Korean Math. Soc. 2018, 55, 1639–1657. [Google Scholar]
- Mahmudov, N.; Emin, S. Fractional-order boundary value problems with katugampola fractional integral conditions. Adv. Differ. Equations 2018, 81, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.V.d.; de Oliveira, E.C. A Gronwall inequality and the Cauchy-type problem by means of Ψ-Hilfer operator. Differ. Equations Appl. 2017, 1, 87–106. [Google Scholar]
- El-hady, E.S.; Ben Makhlouf, A.; Boulaaras, S.; Mchiri, L. Ulam-Hyers-Rassias Stability of Nonlinear Differential Equations with Riemann-Liouville Fractional Derivative. J. Funct. Spaces 2022, 2022. [Google Scholar] [CrossRef]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.A. A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
- Green, J.W.; Valentine, F.A. On the arzela-ascoli theorem. Math. Mag. 1961, 34, 199–202. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arul, R.; Karthikeyan, P.; Karthikeyan, K.; Geetha, P.; Alruwaily, Y.; Almaghamsi, L.; El-hady, E.-s. On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions. Fractal Fract. 2022, 6, 732. https://doi.org/10.3390/fractalfract6120732
Arul R, Karthikeyan P, Karthikeyan K, Geetha P, Alruwaily Y, Almaghamsi L, El-hady E-s. On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions. Fractal and Fractional. 2022; 6(12):732. https://doi.org/10.3390/fractalfract6120732
Chicago/Turabian StyleArul, Ramasamy, Panjayan Karthikeyan, Kulandhaivel Karthikeyan, Palanisamy Geetha, Ymnah Alruwaily, Lamya Almaghamsi, and El-sayed El-hady. 2022. "On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions" Fractal and Fractional 6, no. 12: 732. https://doi.org/10.3390/fractalfract6120732
APA StyleArul, R., Karthikeyan, P., Karthikeyan, K., Geetha, P., Alruwaily, Y., Almaghamsi, L., & El-hady, E. -s. (2022). On Ψ-Hilfer Fractional Integro-Differential Equations with Non-Instantaneous Impulsive Conditions. Fractal and Fractional, 6(12), 732. https://doi.org/10.3390/fractalfract6120732