Fractals via Controlled Fisher Iterated Function System
Abstract
:1. Introduction
2. Preliminary Results
- (a).
- iff ,
- (b).
- ,
- (c).
- .
3. Fisher Fixed-Point Theorem on Controlled Metric Space
4. Controlled F-Iterated Function System and Fractal
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notations
H | Nonempty Set or Nonempty Space |
Metric | |
Metric Space | |
Contraction Mapping | |
Collection of all Nonempty Compact Subsets of H | |
Hausdorff Metric | |
Hausdorff Metric Space | |
Contractivity Factors | |
Hutchinson-Barnsley Operator | |
Invariant Set or Attractor | |
∨ | Maximum |
∧ | Minimum |
References
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman and Company: New York, NY, USA, 1983. [Google Scholar]
- Barnsley, M.F. Fractals Everywhere; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Barnsley, M.F. SuperFractals; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Hutchinson, J.E. Fractals and Self Similarity. Indiana Univ. Math. J. 1987, 30, 713–747. [Google Scholar] [CrossRef]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Edgar, G. Measure, Topology, and Fractal Geometry; Springer: New York, NY, USA, 2008. [Google Scholar]
- Banerjee, S.; Easwaramoorthy, D.; Gowrisankar, A. Fractal Functions, Dimensions and Signal Analysis; Understanding Complex Systems; Springer Complexity: Cham, Switzerland, 2021. [Google Scholar]
- Wojcik, D.; Bialynicki-Birula, I.; Zyczkowski, K. Time evolution of quantum fractals. Phys. Rev. Lett. 2000, 85, 5022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.G.; Zhang, Y.Y.; Li, S.S. The topological insulator in a fractal space. Appl. Phys. Lett. 2014, 104, 233106. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 2018, 172, 1617–1640. [Google Scholar] [CrossRef]
- Brzezinska, M.; Cook, A.M.; Neupert, T. Topology in the Sierpiński-Hofstadter problem. Phys. Rev. B 2018, 98, 205116. [Google Scholar] [CrossRef] [Green Version]
- El-Nabulsi, R.A. Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations. J. Phys. Chem. Solids 2019, 127, 224–230. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Anukool, W. A mapping from Schrodinger equation to Navier–Stokes equations through the product-like fractal geometry, fractal time derivative operator and variable thermal conductivity. Acta Mech. 2021, 232, 5031–5039. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, Y.; Wang, G.; Yin, Y.; Li, C.; Huang, H.; Jia, J. Sierpiński Structure and Electronic Topology in Bi Thin Films on InSb (111) B Surfaces. Phys. Rev. Lett. 2021, 126, 176102. [Google Scholar] [CrossRef]
- Andres, J.; Fiser, J. Metric and topological multivalued fractals. Int. J. Bifurc. Chaos 2004, 14, 1277–1289. [Google Scholar] [CrossRef] [Green Version]
- Andres, J.; Fiser, J.; Gabor, G.; Lesniak, K. Multivalued fractals. Chaos Solitons Fractals 2005, 24, 665–700. [Google Scholar] [CrossRef]
- Andres, J.; Rypka, M. Multivalued Fractals and Hyperfractals. Int. J. Bifurc. Chaos 2012, 22, 1250009. [Google Scholar] [CrossRef]
- Andres, J.; Rypka, M. Fuzzy Fractals and Hyperfractals. Fuzzy Sets Syst. 2016, 300, 40–56. [Google Scholar] [CrossRef]
- Singh, S.L.; Prasad, B.; Kumar, A. Fractals via Iterated Functions and Multifunctions. Chaos Solitons Fractals 2009, 39, 1224–1231. [Google Scholar] [CrossRef]
- Prasad, B.; Katiyar, K. Multi Fuzzy Fractal Theorems in Fuzzy Metric Spaces. Fuzzy Inf. Eng. 2017, 9, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Prasad, B.; Katiyar, K. The Attractors of Fuzzy Super Iterated Function Systems. Indian J. Sci. Technol. 2017, 10, 90453. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.; Prasad, B. Some Generalized IFS in Fuzzy Metric Spaces. Adv. Fuzzy Math. 2017, 12, 297–308. [Google Scholar]
- Easwaramoorthy, D.; Uthayakumar, R. Analysis on Fractals in Fuzzy Metric Spaces. Fractals 2011, 19, 379–386. [Google Scholar] [CrossRef]
- Uthayakumar, R.; Easwaramoorthy, D. Hutchinson-Barnsley Operator in Fuzzy Metric Spaces. International Journal of Mathematical and Computational Sciences. World Acad. Sci. Eng. Technol. 2011, 5, 1418–1422. [Google Scholar]
- Easwaramoorthy, D.; Uthayakumar, R. Intuitionistic Fuzzy Fractals on Complete and Compact Spaces. Control. Comput. Inf. Syst. Commun. Comput. Inf. Sci. 2011, 140, 89–96. [Google Scholar]
- Easwaramoorthy, D.; Uthayakumar, R. Multivalued Intuitionistic Fuzzy Fractals. Glob. J. Pure Appl. Math. 2015, 11, 2519–2535. [Google Scholar] [CrossRef]
- Gowrisankar, A.; Easwaramoorthy, D. Local Countable Iterated Function Systems. Adv. Algebra Anal. Trends Math. 2018, 1, 169–175. [Google Scholar]
- Selmi, B. The relative multifractal analysis, review and examples. Acta Sci. Math. 2020, 86, 635–666. [Google Scholar] [CrossRef]
- Douzi, Z.; Selmi, B. On the mutual singularity of Hewitt–Stromberg measures for which the multifractal functions do not necessarily coincide. Ric. Mat. 2021. Available online: https://link.springer.com/article/10.1007/s11587-021-00572-6 (accessed on 13 October 2022). [CrossRef]
- Selmi, B. Slices of Hewitt-Stromberg measures and co-dimensions formula. Analysis 2022, 42, 23–39. [Google Scholar] [CrossRef]
- Selmi, B. A review on multifractal analysis of Hewitt-Stromberg measures. J. Geom. Anal. 2022, 32, 12. [Google Scholar] [CrossRef]
- Hata, M. On some properties of set-dynamical systems. Proc. Jpn. Acad. Ser. 1985, A 61, 99–102. [Google Scholar] [CrossRef]
- Fernau, H. Infinite iterated function systems. Math. Nachr. 1994, 170, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Klimek, M.; Kosek, M. Generalized iterated function systems, multifunctions and Cantor sets. Ann. Pol. Math. 2009, 96, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Gwozdz-Lukawska, G.; Jachymski, J. The Hutchinson-Barnsley theory for infinite iterated function systems. Bull. Aust. Math. Soc. 2005, 72, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Lesniak, K. Infinite iterated function systems: A multivalued approach. Bull. Pol. Acad. Sci. Math. 2004, 52, 1–8. [Google Scholar] [CrossRef]
- Mauldin, R.D.; Urbanski, M. Dimensions and measure in infinite iterated function systems. Proc. Lond. Math. Soc. 1996, s3-73, 105–154. [Google Scholar] [CrossRef]
- Secelean, N.A. Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 277, 13. [Google Scholar] [CrossRef] [Green Version]
- Pasupathi, R.; Chand, A.K.B.; Navascués, M.A. Cyclic iterated function systems. J. Fixed Point Theory Appl. 2020, 22, 58. [Google Scholar] [CrossRef]
- Pasupathi, R.; Chand, A.K.B.; Navascués, M.A.; Sebastián, M.V. Cyclic generalized iterated function systems. Comput. Math. Methods 2021, 3, e1202. [Google Scholar] [CrossRef]
- Sahu, D.R.; Chakraborty, A.; Dubey, R.P. K-iterated function system. Fractals 2010, 18, 139–144. [Google Scholar] [CrossRef]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled Metric Type Spaces and the Related Contraction Principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. A New Extension to the Controlled Metric Type Spaces Endowed with a Graph. Adv. Differ. Equ. 2021, 94, 94. [Google Scholar] [CrossRef]
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Fisher, B. A fixed point theorem for compact metric spaces. Publ. Math. Debr. 1978, 25, 193–194. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thangaraj, C.; Easwaramoorthy, D. Fractals via Controlled Fisher Iterated Function System. Fractal Fract. 2022, 6, 746. https://doi.org/10.3390/fractalfract6120746
Thangaraj C, Easwaramoorthy D. Fractals via Controlled Fisher Iterated Function System. Fractal and Fractional. 2022; 6(12):746. https://doi.org/10.3390/fractalfract6120746
Chicago/Turabian StyleThangaraj, C., and D. Easwaramoorthy. 2022. "Fractals via Controlled Fisher Iterated Function System" Fractal and Fractional 6, no. 12: 746. https://doi.org/10.3390/fractalfract6120746
APA StyleThangaraj, C., & Easwaramoorthy, D. (2022). Fractals via Controlled Fisher Iterated Function System. Fractal and Fractional, 6(12), 746. https://doi.org/10.3390/fractalfract6120746