Pore Structural and Fractal Analysis of the Effects of MgO Reactivity and Dosage on Permeability and F–T Resistance of Concrete
Abstract
:1. Introduction
2. Materials and Analytical Methods
2.1. Raw Materials
2.2. Mix Proportion Design
2.3. Test Methods
2.3.1. Compressive Strength of Concrete
2.3.2. Water Impermeability
2.3.3. Freezing and Thawing (T–F) Resistance Test
2.3.4. Pore Structure Evaluation by Mercury Intrusion Porosimeter (MIP)
2.3.5. Air Void Evaluation by The Linear Traverse Method
2.3.6. Calculation of Fractal Dimension
3. Results and Discussion
3.1. Compressive Strength of Concrete
3.2. Permeability
3.3. F–T Resistance
3.4. Pore Structures and Pore Structural Analysis of Durability
3.4.1. Pore Structures
3.4.2. Pore Structural Analysis of Permeability and F–T resistance
3.5. Air Void Parameters and Analysis
3.5.1. Air Void Parameters
3.5.2. Air Void Analysis of Permeability and F–T resistance
3.6. Fractal Dimension of Pore Surface (Ds) and Fractal Analysis
3.6.1. Fractal Dimension of Pore Surface (Ds)
3.6.2. Fractal Analysis of Permeability and F–T Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, F.; Miao, M.; Yan, P. Hydration characteristics and expansive mechanism of MgO expansive agents. Constr. Build. Mater. 2018, 183, 234–242. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Dong, Y.; Chen, E.; Tang, S. Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials. J. Clean. Prod. 2018, 203, 540–558. [Google Scholar] [CrossRef]
- Wang, X.; Yu, R.; Shui, Z.; Song, Q.; Zhang, Z. Mix design and characteristics evaluation of an eco-friendly ultra-high performance concrete incorporating recycled coral based materials. J. Clean. Prod. 2017, 165, 70–80. [Google Scholar] [CrossRef]
- Yang, H.J.; Lee, H.; Hanif, A. Hydration characteristics and microstructure evolution of concrete with blended binders from LCD and OLED wastes. Eur. J. Environ. Civ. Eng. 2022, 2032836. [Google Scholar] [CrossRef]
- Xie, Z.; Zhu, Z.; Fu, Z.; Lv, X. Simulation of the temperature field for massive concrete structures using an interval finite element method. Eng. Comput. 2020, 37, 45. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Zhou, S.; Chen, E.; Tang, S. Energy saving benefit, mechanical performance, volume stabilities, hydration properties and products of low heat cement-based materials. Energ. Build. 2018, 170, 157–169. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Ling, Y. Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. J. Clean. Prod. 2021, 294. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Zhou, S.; Chen, E.; Tang, S. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash. Constr. Build. Mater. 2018, 187, 1073–1091. [Google Scholar] [CrossRef]
- Zhan, P.; He, Z. Application of shrinkage reducing admixture in concrete: A review. Constr. Build. Mater. 2019, 201, 676–690. [Google Scholar] [CrossRef]
- Wang, X.; Wu, D.; Zhang, J.; Yu, R.; Hou, D.; Shui, Z. Design of sustainable ultra-high performance concrete: A review. Constr. Build. Mater. 2021, 307, 124643. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Wang, K. Numerical modeling of rebar-matrix bond behaviors of nano-SiO2 and PVA fiber reinforced geopolymer composites. Ceram. Int. 2021, 47, 11727–11737. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram. Int. 2020, 46, 20027–20037. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.; Shi, Y.; Tang, S.; Chen, E. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete. Compos. Part B 2017, 130, 28–37. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Zhao, Z.; Ni, H.; Su, Z.; Li, Z. Experimental study of displacement field of layered soils surrounding laterally loaded pile based on transparent soil. J. Soil Sediment. 2021, 21, 3072–3083. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Chen, Y.; Ni, H.; Zhao, Z.; Chen, W.; Zhao, J. Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer. Chemosphere 2021, 268, 131652. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.; Fang, J.; Hou, W.; Ji, X. Synergetic effects of curing temperature and hydration reactivity of MgO expansive agents on their hydration and expansion behaviours in cement pastes. Constr. Build. Mater. 2019, 207, 206–217. [Google Scholar] [CrossRef]
- Gao, P.; Wu, S.X.; Lin, P.H.; Wu, Z.R.; Tang, M.S. The characteristics of air void and frost resistance of RCC with fly ash and expansive agent. Constr. Build. Mater. 2006, 20, 586–590. [Google Scholar] [CrossRef]
- Mo, L.; Deng, M.; Wang, A. Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cem. Conc. Compos. 2012, 34, 377–383. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.; Li, X.; Guo, F.; Tang, S.; Lu, X.; Hanif, A. Influence of reactivity and dosage of MgO expansive agent on shrinkage and crack resistance of face slab concrete. Cem. Conc. Compos. 2022, 126, 104333. [Google Scholar] [CrossRef]
- Cao, F.; Yan, P.Y. The influence of the hydration procedure of MgO expansive agent on the expansive behavior of shrinkage-compensating mortar. Constr. Build. Mater. 2019, 202, 162–168. [Google Scholar] [CrossRef]
- Wang, L.; Guo, F.X.; Yang, H.M.; Wang, Y.; Tang, S.W. Comparison of fly ash, PVA fiber, MgO and shrinkage-reducing admixture on the frost resistance of face slab concrete via pore structural and fractal analysis. Fractals 2021, 29, 2140002. [Google Scholar] [CrossRef]
- Cao, F.; Miao, M.; Yan, P.Y. Effects of reactivity of MgO expansive agent on its performance in cement-based materials and an improvement of the evaluating method of MEA reactivity. Constr. Build. Mater. 2018, 187, 257–266. [Google Scholar] [CrossRef]
- Wang, L.; Lu, X.; Liu, L.; Xiao, J.; Zhang, G.; Guo, F.; Li, L. Influence of MgO on the hydration and shrinkage behavior of low heat Portland cement-based materials via pore structural and fractal analysis. Fractal Fract. 2022, 6, 40. [Google Scholar] [CrossRef]
- Zheng, J.; Wong, H.S.; Buenfeld, N.R. Assessing the influence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model. Cem. Conc. Res. 2009, 39, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Jang, B.S.; Kim, J.H.; Lee, K.M. Durability characteristics of fly ash concrete containing lightly burnt MgO. Constr. Build. Mater. 2014, 58, 77–84. [Google Scholar] [CrossRef]
- Jiang, F.; Deng, M.; Mo, L.W.; Wu, W.Q. Effects of MgO expansive agent and steel fiber on crack resistance of a bridge deck. Materials 2020, 13, 3074. [Google Scholar] [CrossRef]
- Sherir, M.; Hossain, K.; Lachemi, M. Permeation and transport properties of self-healed cementitious composite produced with MgO expansive agent. J. Mater. Civ. Eng. 2018, 30, 2466. [Google Scholar] [CrossRef]
- Şahmaran, M.; Özbay, E.; Yücel, H.; Lachemi, M.; Li, V. Frost resistance and microstructure of engineered cementitious composites: Influence of fly ash and micro polyvinyl alcohol fiber. Cem. Conc. Compos. 2012, 34, 156–165. [Google Scholar] [CrossRef]
- Nam, J.; Kim, G.Y.; Lee, B.; Hasegawa, R.; Hama, Y. Frost resistance of polyvinyl alcohol fiber and polypropylene fiber reinforced cementitious composites under freeze thaw cycling. Compos. Part B 2016, 90, 241–250. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, G.G.; Pang, C.M. Influence of pore structures on the frost resistance of concrete. Mag. Concr. Res. 2017, 69, 271–279. [Google Scholar] [CrossRef]
- Xiao, J.; Xu, Z.; Murong, Y.; Lei, B.; Chu, L.; Jiang, H.; Qu, W. Effect of chemical composition of fine aggregate on the frictional behavior of concrete–soil interface under sulfuric acid environment. Fractal Fract. 2022, 6, 22. [Google Scholar] [CrossRef]
- An, Q.; Chen, X.; Wang, H.; Yang, H.; Yang, Y. Segmentation of concrete cracks by using fractal dimension and UHK-net. Fractal Fract. 2022, 6, 95. [Google Scholar] [CrossRef]
- Huang, J.; Li, W.; Huang, D.; Chen, E. Fractal analysis on pore structure and hydration of magnesium oxysulfate cements by first principle, thermodynamic and microstructure-based methods. Fractal Fract. 2021, 5, 164. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, X.; Yang, H.; Lv, X. Investigation and application of fractal theory in cement-based materials: A review. Fractal Fract. 2021, 5, 247. [Google Scholar] [CrossRef]
- DL/T 5296-2013; Technical Specification of Magnesium Oxide Expansive for Use in Hydraulic Concrete, China. China Electric Power Press: Beijing, China, 2014.
- CBMF 19-2017; Magnesium Oxide Expansive Agent for Concrete. China Building Materials Industry Press: Beijing, China, 2017.
- DL/T 5330-2015; Code for Mix Design of Hydraulic Concrete, China. China Electric Power Press: Beijing, China, 2016.
- Wang, L.; Guo, F.X.; Lin, Y.Q.; Yang, H.M.; Tang, S.W. Comparison between the effects of phosphorous slag and fly ash on the C-S-H structure, long-term hydration heat and volume deformation of cement-based materials. Constr. Build. Mater. 2020, 250, 118807. [Google Scholar] [CrossRef]
- DL/T 5150-2017; Test Code for Hydraulic Concrete, China. China Electric Power Press: Beijing, China, 2017.
- Chen, Y.; Cen, G.P.; Cui, Y.H. Comparative study on the effect of synthetic fiber on the preparation and durability of airport pavement concrete. Constr. Build. Mater. 2018, 184, 34–44. [Google Scholar] [CrossRef]
- Wang, L.; Luo, R.Y.; Zhang, W.; Jin, M.M.; Tang, S. Effects of fineness and content of phosphorus slag on cement hydration, permeability, pore structure and fractal dimension of concrete. Fractals 2021, 29, 2140004. [Google Scholar] [CrossRef]
- ASTM C666/666M-15; Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C457/457M-16; Standard Test Method for Microscopical Determination of Parameters of The Air-Void System in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2016.
- Pfeifer, P.; Avnir, D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 1983, 79, 3558–3565. [Google Scholar] [CrossRef]
- Zhang, B.; Li, S.F. Determination of the surface fractal dimension for porous media by mercury porosimetry. Ind. Eng. Chem. Res. 1995, 34, 1383–1386. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Liu, X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry. Appl. Surf. Sci. 2006, 253, 1349–1355. [Google Scholar] [CrossRef]
- Beshr, S.; Mohaimen, I.M.A.; Azline, M.N.N.; Azizi, S.N.; Nabilah, A.B.; Aznieta, A.A. Feasibility assessment on self-healing ability of cementitious composites with MgO. J. Build. Eng. 2021, 34, 101914. [Google Scholar] [CrossRef]
- Mo, L.; Liu, M.; Al-Tabbaa, A.; Deng, M. Deformation and mechanical properties of the expansive cements produced by inter-grinding cement clinker and MgOs with various reactivities. Constr. Build. Mater. 2015, 80, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Zhou, S.; Tang, S.W.; Lu, X. Investigation of microstructure of C-S-H and micro-mechanics of cement pastes under NH4NO3 dissolution by 29Si MAS NMR and microhardness. Measurement 2021, 185, 110019. [Google Scholar] [CrossRef]
- Cao, F.; Yan, P.Y. Effects of reactivity and dosage of magnesium oxide expansive agents on long-term volume variation of concrete. J. Chin. Ceram. Soc. 2018, 46, 1126–1132. [Google Scholar]
- Wang, L.; He, Z.; Cai, X.H. Characterization of pozzolanic reaction and its effect on the C-S-H gel in fly ash-cement paste. J. Wuhan Univ. Technol. 2011, 26, 320–325. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Y.; Geng, Z.C.; Xu, X.F.; Yu, W.Z. Structure, fractality, mechanics and durability of calcium silicate hydrates. Fractal Fract. 2021, 5, 47. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.Q.; Zhou, S.H.; Chen, E.; Tang, S.W. Hydration, mechanical property and C-S-H structure of early-strength low-heat cement-based materials. Mater. Lett. 2018, 217, 151–154. [Google Scholar] [CrossRef]
- Mo, L.; Deng, M.; Tang, M.S. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cem. Conc. Res. 2010, 40, 437–446. [Google Scholar] [CrossRef]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete; Prentice-Hall: Murray Hill, Japan, 2003. [Google Scholar]
- Mo, L.; Fang, J.W.; Huang, B.; Wang, A.G.; Deng, M. Combined effects of biochar and MgO expansive additive on the autogenous shrinkage, internal relative humidity and compressive strength of cement pastes. Constr. Build. Mater. 2019, 229, 116877. [Google Scholar] [CrossRef]
- Metha, P.K.; Monterio, P.J.M. Concrete: Structure, Properties and Materials, 4th ed.; McGraw-Hill: New York, NY, USA, 2013. [Google Scholar]
- Powers, T.; Brownyard, T.L. Studies of the physical properties of hardened Portland cement paste- Part 8. The freezing of water in hardened Portland cement paste. J. Am. Concr. Inst. 1947, 18, 933–969. [Google Scholar]
- Neville, A.M. Properties of Concrete, 4th ed.; Longman: London, UK, 2000. [Google Scholar]
- Shon, C.; Abdigaliyev, A.; Bagitova, S.; Chung, C.W.; Kim, D. Determination of air-void system and modified frost resistance number for freeze-thaw resistance evaluation of ternary blended concrete made of ordinary Portland cement/silica fume/class F fly ash. Cold Reg. Sci. Technol. 2018, 155, 127–136. [Google Scholar] [CrossRef]
- Xiao, J.; Long, X.; Qu, W.; Li, L.; Jiang, H.; Zhong, Z. Influence of sulfuric acid corrosion on concrete stress-strain relationship under uniaxial compression. Measurement 2021, 187, 110318. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.M.; Guo, F.X.; Wang, Y.; Tang, S.W. Pore structural and fractal analysis of the influence of fly ash and silica fume on the mechanical property and abrasion resistance of concrete. Fractals 2021, 29, 2140003. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, J.X.; Han, S. Fractal analysis of relation between strength and pore structure of hardened mortar. Constr. Build. Mater. 2017, 135, 1–7. [Google Scholar] [CrossRef]
Parameters | P·I Cement | M50 | M300 |
---|---|---|---|
Chemicals (wt.%) | |||
CaO | 61.3 | 2.4 | 2.6 |
SiO2 | 19.3 | 1.3 | 1.4 |
Fe2O3 | 4.3 | 0.6 | 0.5 |
MgO | 3.7 | 91.2 | 91.0 |
SO3 | 2.6 | 0.1 | 0.1 |
Al2O3 | 4.7 | 0.1 | 0.1 |
Loss on ignition | 1.2 | 3.7 | 3.1 |
Physical properties | |||
Blaine specific surface area (m2/kg) | 326 | - | - |
BET specific surface area (m2/g) | 0.91 | 31.2 | 12.50 |
Median particle size (D50, μm) | 17.3 | 11.8 | 19.8 |
Specific gravity | 3.20 | 3.51 | 3.50 |
Designations | W/B Ratio | MgO Dosage (wt.%) | Mix Proportions (kg/m3) | Slump (mm) | |||||
---|---|---|---|---|---|---|---|---|---|
Water | Cement | MgO | Sand | Coarse Aggregate | Super Plasticizer | ||||
C0 | 0.4 | 0 | 122 | 305 | 0 | 630 | 1339 | 1.8 | 65 |
C4M50 | 0.4 | 4 | 122 | 293 | 12 | 631 | 1340 | 2.4 | 55 |
C8M50 | 0.4 | 8 | 122 | 281 | 24 | 631 | 1341 | 2.7 | 51 |
C4M300 | 0.4 | 4 | 122 | 293 | 12 | 631 | 1340 | 2.1 | 62 |
C8M300 | 0.4 | 8 | 122 | 281 | 24 | 631 | 1340 | 2.4 | 57 |
Designations | Curing Time (Days) | Average Water Seepage Height Dm (cm) | Relative Permeability Coefficient Kr (×10−7 cm/h) |
---|---|---|---|
C0 | 28 | 3.5 ± 0.12 | 6.25 ± 0.43 |
180 | 2.7± 0.14 | 3.72 ± 0.39 | |
C4M50 | 28 | 3.1 ± 0.1 | 4.91 ± 0.32 |
180 | 2.2 ± 0.11 | 2.47 ± 0.25 | |
C8M50 | 28 | 2.7 ± 0.14 | 3.72± 0.39 |
180 | 1.8 ± 0.12 | 1.65 ± 0.22 | |
C4M300 | 28 | 3.5 ± 0.13 | 6.25 ± 0.47 |
180 | 1.9 ± 0.12 | 1.84 ± 0.23 | |
C8M300 | 28 | 3.6 ± 0.10 | 6.62 ± 0.37 |
180 | 1.4 ± 0.11 | 1.00 ± 0.16 |
Designations | Hydration Age (Days) | The Most Probable Pore Diameter (nm) | Porosity (%) | Pore Size Distribution | ||
---|---|---|---|---|---|---|
<10 nm (%) | 10–50 nm (%) | 50 nm–10 μm (%) | ||||
C0 | 3 | 166.0 | 33.6 | 7.2 | 23.9 | 68.6 |
28 | 73.3 | 23.6 | 13.2 | 42.6 | 43.6 | |
180 | 41.6 | 19.8 | 20.6 | 53.2 | 25.9 | |
C4M50 | 3 | 151.3 | 29.6 | 7.1 | 31.2 | 61.1 |
28 | 63.5 | 20.3 | 12.9 | 46.9 | 40.1 | |
180 | 35.5 | 17.7 | 20.9 | 58.9 | 19.4 | |
C8M50 | 3 | 126.4 | 25.5 | 6.8 | 38.9 | 54.2 |
28 | 52.3 | 17.3 | 13.0 | 52.1 | 34.6 | |
180 | 26.9 | 14.5 | 19.7 | 64.8 | 14.9 | |
C4M300 | 3 | 168.2 | 34.2 | 7.1 | 22.9 | 69.5 |
28 | 74.6 | 24.3 | 12.9 | 41.4 | 45.2 | |
180 | 29.6 | 14.7 | 19.6 | 63.8 | 15.9 | |
C8M300 | 3 | 170.6 | 33.1 | 6.8 | 22.8 | 69.5 |
28 | 72.9 | 24.2 | 12.5 | 51.9 | 35.4 | |
180 | 21.3 | 11.8 | 20.9 | 68.1 | 10.8 |
Designations | Hydration Age (Days) | Total Number of Air Voids N | Traverse Length through Air Ta (mm) | Hardened Air Content A (%) | Average Chord Length l (μm) | Average Air Void Diameter (μm) | Spacing Factor (μm) |
---|---|---|---|---|---|---|---|
C0 | 28 | 720 | 154 | 4.9 | 214 | 161 | 235 |
180 | 710 | 151 | 4.8 | 213 | 160 | 233 | |
C4M50 | 28 | 782 | 151 | 4.8 | 193 | 145 | 214 |
180 | 759 | 154 | 4.9 | 203 | 153 | 225 | |
C8M50 | 28 | 798 | 145 | 4.6 | 182 | 136 | 204 |
180 | 755 | 142 | 4.5 | 188 | 141 | 211 | |
C4M300 | 28 | 765 | 148 | 4.7 | 194 | 145 | 216 |
180 | 741 | 145 | 4.6 | 196 | 147 | 218 | |
C8M300 | 28 | 766 | 145 | 4.6 | 189 | 142 | 213 |
180 | 735 | 148 | 4.7 | 201 | 151 | 227 |
Designations | Hydration Age (Days) | Ds | R2 |
---|---|---|---|
C0 | 3 | 2.658 | 0.946 |
28 | 2.835 | 0.974 | |
180 | 2.925 | 0.956 | |
C4M50 | 3 | 2.765 | 0.965 |
28 | 2.876 | 0.946 | |
180 | 2.941 | 0.957 | |
C8M50 | 3 | 2.815 | 0.980 |
28 | 2.912 | 0.957 | |
180 | 2.968 | 0.967 | |
C4M300 | 3 | 2.651 | 0.978 |
28 | 2.838 | 0.983 | |
180 | 2.972 | 0.984 | |
C8M300 | 3 | 2.667 | 0.988 |
28 | 2.836 | 0.991 | |
180 | 2.983 | 0.992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Song, X.; Yang, H.; Wang, L.; Tang, S.; Wu, B.; Mao, W. Pore Structural and Fractal Analysis of the Effects of MgO Reactivity and Dosage on Permeability and F–T Resistance of Concrete. Fractal Fract. 2022, 6, 113. https://doi.org/10.3390/fractalfract6020113
Wang L, Song X, Yang H, Wang L, Tang S, Wu B, Mao W. Pore Structural and Fractal Analysis of the Effects of MgO Reactivity and Dosage on Permeability and F–T Resistance of Concrete. Fractal and Fractional. 2022; 6(2):113. https://doi.org/10.3390/fractalfract6020113
Chicago/Turabian StyleWang, Lei, Xuefeng Song, Huamei Yang, Lei Wang, Shengwen Tang, Bo Wu, and Wenting Mao. 2022. "Pore Structural and Fractal Analysis of the Effects of MgO Reactivity and Dosage on Permeability and F–T Resistance of Concrete" Fractal and Fractional 6, no. 2: 113. https://doi.org/10.3390/fractalfract6020113
APA StyleWang, L., Song, X., Yang, H., Wang, L., Tang, S., Wu, B., & Mao, W. (2022). Pore Structural and Fractal Analysis of the Effects of MgO Reactivity and Dosage on Permeability and F–T Resistance of Concrete. Fractal and Fractional, 6(2), 113. https://doi.org/10.3390/fractalfract6020113