On Convexity, Monotonicity and Positivity Analysis for Discrete Fractional Operators Defined Using Exponential Kernels
Abstract
:1. Introduction
2. Basic Formulations
3. Results and Analysis
- The υ-monotone strictly increasing can be obtained from the Definition 3 by replacing “≥” sign with “>” sign;
- The υ-monotone strictly decreasing can be obtained from the Definition 3 by replacing “≤” sign with “<” sign.
3.1. Positivity and Monotonicity Results
3.2. Monotonicity and -Convexity Results
3.3. Convexity Results
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodrich, C.S.; Peterson, A. Discrete Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Abdeljawad, T. Different type kernel h–fractional differences and their fractional h–sums. Chaos Solit. Fract. 2018, 116, 146–156. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Jarad, F.; Atangana, A.; Mohammed, P.O. On a new type of fractional difference operators on h-step isolated time scales. J. Frac. Calc. Nonlinear Sys. 2021, 1, 46–74. [Google Scholar]
- Atici, F.M.; Atici, M.; Belcher, M.; Marshall, D. A new approach for modeling with discrete fractional equations. Fund. Inform. 2017, 151, 313–324. [Google Scholar]
- Atici, F.M.; Atici, M.; Nguyen, N.; Zhoroev, T.; Koch, G. A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects. Comput. Math. Biophys. 2019, 7, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.K. On Riemann–Liouville and Caputo fractional forward difference monotonicity analysis. Mathematics 2021, 9, 1303. [Google Scholar] [CrossRef]
- Goodrich, C.S.; Muellner, M. An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators. Appl. Math. Lett. 2019, 98, 446–452. [Google Scholar] [CrossRef]
- Silem, A.; Wu, H.; Zhang, D.-J. An Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation. Appl. Math. Lett. 2021, 116, 107049. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Discrete generalized fractional operators defined using h-discrete Mittag–Leffler kernels and applications to AB fractional difference systems. Math. Meth. Appl. Sci. 2020, 1–26. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag–Leffler kernel. Chaos Solit. Fract. 2017, 116, 1–5. [Google Scholar] [CrossRef]
- Suwan, I.; Abdeljawad, T.; Jarad, F. Monotonicity analysis for nabla h-discrete fractional Atangana-Baleanu differences. Chaos Solit. Fract. 2018, 117, 50–59. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Abdallaa, B. Monotonicity results for delta and nabla Caputo and Riemann fractional differences via dual identities. Filomat 2017, 31, 3671–3683. [Google Scholar] [CrossRef]
- Goodrich, C.S.; Jonnalagadda, J.M.; Lyons, B. Convexity, monotonicity, and positivity results for sequential fractional nabla difference operators with discrete exponential kernels. Math. Meth. Appl. Sci. 2021, 44, 7099–7120. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Hamasalh, F.K.; Abdeljawad, T. Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag–Leffler kernels. Adv. Differ. Equ. 2021, 2021, 213. [Google Scholar] [CrossRef]
- Atici, F.; Uyanik, M. Analysis of discrete fractional operators. Appl. Anal. Discr. Math. 2015, 9, 139–149. [Google Scholar] [CrossRef]
- Suwan, I.; Owies, S.; Abdeljawad, T. Monotonicity results for h-discrete fractional operators and application. Adv. Differ. Equ. 2018, 2018, 207. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.K. On Discrete delta Caputo–Fabrizio fractional operators and monotonicity analysis. Fractal Fract. 2021, 5, 116. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 2017, 78. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Al-Mdallal, Q.M.; Hajji, M.A. Arbitrary order fractional difference operators with discrete exponential kernels and applications. Discret. Dyn. Nat. Soc. 2017, 2017, 4149320. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, C.S.; Lizama, C. A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity. Israel J. Math. 2020, 236, 533–589. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Commput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, P.O.; Almutairi, O.; Agarwal, R.P.; Hamed, Y.S. On Convexity, Monotonicity and Positivity Analysis for Discrete Fractional Operators Defined Using Exponential Kernels. Fractal Fract. 2022, 6, 55. https://doi.org/10.3390/fractalfract6020055
Mohammed PO, Almutairi O, Agarwal RP, Hamed YS. On Convexity, Monotonicity and Positivity Analysis for Discrete Fractional Operators Defined Using Exponential Kernels. Fractal and Fractional. 2022; 6(2):55. https://doi.org/10.3390/fractalfract6020055
Chicago/Turabian StyleMohammed, Pshtiwan Othman, Ohud Almutairi, Ravi P. Agarwal, and Y. S. Hamed. 2022. "On Convexity, Monotonicity and Positivity Analysis for Discrete Fractional Operators Defined Using Exponential Kernels" Fractal and Fractional 6, no. 2: 55. https://doi.org/10.3390/fractalfract6020055
APA StyleMohammed, P. O., Almutairi, O., Agarwal, R. P., & Hamed, Y. S. (2022). On Convexity, Monotonicity and Positivity Analysis for Discrete Fractional Operators Defined Using Exponential Kernels. Fractal and Fractional, 6(2), 55. https://doi.org/10.3390/fractalfract6020055