Geometric Properties of a Certain Class of Mittag–Leffler-Type Functions
Abstract
:1. Introduction and Motivation
2. A Set of Useful Lemmas
- (i)
- If then .
- (ii)
- If then .
- (i)
- is continuous in Λ.
- (ii)
- is positive and .
- (iii)
- for all such that
3. Starlikeness and Convexity of Normalized Mittag–Leffler-Type Functions
- (a)
- and
- (b)
- and .
- (a)
- For any and , we obtainIn this case, we haveIt can be noted that the assertions given by (i) and (ii) are equivalent to and Therefore, by (5), we find thatFurthermore, with the help of Lemma 1, we get the required result.
- (b)
- Using Lemma 7, for any , it follows that
- (a)
- and
- (b)
- and
- (a)
- For any , under the given condition (b), we getMoreover, it can be seen that the asertions (i) and (ii) are equivalent to and whereNow, by using (5), we getAgain, by using Lemma 2, the desired result can be established.
- (b)
- By using Lemma 7, for any , we get
- (a)
- The parameters , and satisfy the following inequalities:
- (b)
- The parameters , and satisfy the conditions given by
- (a)
- A simple computation leads us toIn our case, we getWe see that the assertions (i) and (ii) are equivalent to and Therefore, by (5), it follows thatMoreover, with the help of the inequality:
- (b)
- Under the given hypothesis, by using Lemma 7, we obtainUsing the above inequalities, we get
- (a)
- and such that
- (b)
- , and with
- (a)
- The parameters α, β, and γ satisfy the hypothesis (a) of Theorem 2 together with the following hypotheses:
- (b)
- , and
- (a)
- α and β satisfy the hypothesis of Theorem 2 as well as the following hypothesis:
- (b)
- , and
4. Hardy Space of the Mittag–Leffler-Type Functions
- (i)
- If then ∃ such that .
- (ii)
- If then .
- (iii)
- ∃ such that .
5. Inclusion Properties
6. Pre-Starlikeness and -Uniform Convexity
7. Concluding Remarks and Observations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Rønning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.W. On uniformly starlike functions. J. Math. Anal. Appl. 1991, 155, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.W. On uniformly convex functions. Ann. Pol. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef] [Green Version]
- MacGregor, T.H. The radius of univalence of certain analytic functions. II. Proc Am. Math. Soc. 1963, 14, 521–524. [Google Scholar] [CrossRef]
- MacGregor, T.H. A class of univalent functions. Proc. Am. Math. Soc. 1964, 15, 311–317. [Google Scholar] [CrossRef]
- Mehrez, K. Some geometric properties of a class of functions related to the Fox-Wright functions. Banach J. Math. Anal. 2020, 14, 1222–1240. [Google Scholar] [CrossRef]
- Swaminathan, A. Inclusion theorems of convolution operators associated with normalized hypergeometric functions. J. Comput. Appl. Math. 2006, 197, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Mehrez, K.; Das, S.; Kumar, A. Geometric properties of the products of modified Bessel functions of the first kind. Bull. Malays. Math. Sci. Soc. 2021, 44, 2715–2733. [Google Scholar] [CrossRef]
- Das, S.; Mehrez, K. Geometric properties of the four parameters Wright function. J. Contemp. Math. Anal. 2022, 57, 43–58. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag–Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- Mittag–Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Über den Fundamentalsatz in der Theorie der Funcktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die Nullstellen der Funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Fox, C. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. (Ser. 2) 1928, 27, 389–400. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. Proc. Lond. Math. Soc. (Ser. 2) 1940, 46, 389–408. [Google Scholar] [CrossRef]
- Srivastava, H.M. Charles Fox. Bull. Lond. Math. Soc. 1980, 12, 67–70. [Google Scholar] [CrossRef]
- Al-Bassam, M.A.; Luchko, Y.F. On generalized fractional calculus and its application to the solution of integro-differential equations. J. Fract. Calc. Appl. 1995, 7, 69–88. [Google Scholar]
- Wright, E.M. The asymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. (Ser. 2) 1935, 38, 257–270. [Google Scholar] [CrossRef]
- Pogány, T.K.; Srivastava, H.M. Some Mathieu-type series associated with the Fox-Wright function. Comput. Math. Appl. 2009, 57, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. I. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1940, 238, 423–451. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Gorenflo, G.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In Proceedings of the Eighth International Colloquium on Differential Equations, Plovdiv, Bulgaria, 18–23 August 1997; Bainov, D., Ed.; VSP Publishers: Utrecht, The Netherlands; Tokyo, Japan, 1998; pp. 195–202. [Google Scholar]
- Srivastava, H.M. Some families of Mittag–Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions. Integral Transforms Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
- Gerhold, S. Asymptotics for a variant of the Mittag–Leffler function. Integral Transforms Spec. Funct. 2012, 23, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integral Transforms Spec. Funct. 2013, 24, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Le Roy, É. Valeurs asymptotiques de certaines séries procédant suivant les puissances entiéreset positives d’une variable réelle. Bull. Sci. Math. 1900, 24, 245–268. [Google Scholar]
- Conway, R.W.; Maxwell, W.L. A queuing model with state dependent service rates. J. Industr. Engrg. 1962, 12, 132–136. [Google Scholar]
- Mocanu, P.T. Some starlike conditions for analytic functions. Rev. Roum. Math. Pures Appl. 1988, 33, 117–124. [Google Scholar]
- Ravichandran, V. On uniformly convex functions. Ganita 2002, 53, 117–124. [Google Scholar]
- Ozaki, S. On the theory of multivalent functions. II. Sci. Rep. Tokyo Bunrika Daigaku Sect. A 1941, 4, 45–87. [Google Scholar]
- Ozaki, S. On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku Sect. A 1935, 2, 167–188. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series, No. 55; National Bureau of Standards: Washington, DC, USA, 1972; Dover Publications Incorporated: New York, NY, USA, 1992; Reprinted. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second-order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Eenigenburg, P.; Miller, S.S.; Mocanu, P.T.; Reade, M.O. On a Briot-Bouquet differential subordination. Rev. Roum. Math. Pures Appl. 1984, 29, 567–573. [Google Scholar]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag–Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the Borel distribution of the Mittag–Leffler type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- Noreen, S.; Raza, M.; Liu, J.-L.; Arif, M. Geometric properties of normalized Mittag–Leffler functions. Symmetry 2019, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Noreen, S.; Raza, M.; Din, M.U.; Hussain, S. On certain geometric properties of normalized Mittag–Leffler functions. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2019, 81, 167–174. [Google Scholar]
- Duren, P.L. Theory of Hp Space; Series of Monographs and Textbooks in Pure and Applied Mathematics; Academic Press: New York, NY, USA; London, UK, 1970; Volume 38. [Google Scholar]
- Komatu, Y. On a one-parameter additive family of operators defined on analytic functions regular in the unit disk. Bull. Fac. Sci. Engrg. Chuo Univ. Ser. I Math. 1979, 22, 1–22. [Google Scholar]
- Pohlen, T. The Hadamard Product and Universal Power Series. Doctoral Dissertation, Universität Trier, Trier, Germany, 2009. [Google Scholar]
- Noreen, S.; Raza, M.; Malik, S.N. Certain geometric properties of Mittag–Leffler functions. J. Inequal. Appl. 2019, 2019, 94. [Google Scholar] [CrossRef] [Green Version]
- Eenigenburg, P.J.; Keogh, F.R. The Hardy class of some univalent functions and their derivatives. Mich. Math. J. 1970, 17, 335–346. [Google Scholar] [CrossRef]
- MacGregor, T.H. Functions whose derivative has a positive real part. Trans. Am. Math. Soc. 1962, 104, 532–537. [Google Scholar] [CrossRef]
- Prajapat, J.K.; Maharana, S.; Bansal, D. Radius of starlikeness and Hardy space of Mittag–Leffler functions. Filomat 2018, 32, 6475–6486. [Google Scholar] [CrossRef] [Green Version]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman Scientific & Technical, Harlow; Co-Published in the United States with John Wiley & Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1994. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Kochubei, A.N.; Luchko, Y. Handbook of Fractional Calculus with Applications, 1st ed.; Basic Theory; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Kochubei, A.N.; Luchko, Y. Handbook of Fractional Calculus with Applications, 2nd ed.; Fractional Differential Equations; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2014. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications, 2nd ed.; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2000. [Google Scholar]
- Rogosin, S.V. The role of the Mittag–Leffler function in fractional modeling. Mathematics 2015, 3, 368–381. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Convolutions in Geometric Function Theory; Séminaire de Mathématiques Supérieures; Presses de l’Université de Montréal: Montreal, QC, Canada, 1982; Volume 83. [Google Scholar]
- Sheil-Small, T.; Silverman, H.; Silvia, E.M. Convolution multipliers and starlike functions. J. Anal. Math. 1982, 41, 181–192. [Google Scholar] [CrossRef]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. (Ser. 2) 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wiśniowska, A. Conic regions and k-starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transforms Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Alpay, D. An Advanced Complex Analysis Problem Book: Topological Vector Spaces, Functional Analysis, and Hilbert Spaces of Analytic Functions; Birkhäuser/Springer: Cham, Switzerland, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric Properties of a Certain Class of Mittag–Leffler-Type Functions. Fractal Fract. 2022, 6, 54. https://doi.org/10.3390/fractalfract6020054
Srivastava HM, Kumar A, Das S, Mehrez K. Geometric Properties of a Certain Class of Mittag–Leffler-Type Functions. Fractal and Fractional. 2022; 6(2):54. https://doi.org/10.3390/fractalfract6020054
Chicago/Turabian StyleSrivastava, Hari M., Anish Kumar, Sourav Das, and Khaled Mehrez. 2022. "Geometric Properties of a Certain Class of Mittag–Leffler-Type Functions" Fractal and Fractional 6, no. 2: 54. https://doi.org/10.3390/fractalfract6020054
APA StyleSrivastava, H. M., Kumar, A., Das, S., & Mehrez, K. (2022). Geometric Properties of a Certain Class of Mittag–Leffler-Type Functions. Fractal and Fractional, 6(2), 54. https://doi.org/10.3390/fractalfract6020054