Generalized Full Order Observer Subject to Incremental Quadratic Constraint (IQC) for a Class of Fractional Order Chaotic Systems
Abstract
:1. Introduction
- 1.
- Convert fractional/integer order dynamic systems into class (9).
- 2.
- Obtain the symmetric incremental multiplier matrix using the following inequality:
- 3.
- Check the bound of dynamic system. If the system is bounded, then go to the next step. Otherwise, the method does not work here.
- 4.
- Use matrix; into inequality (27) to compute gain matrixes; , , ; and symmetric matrix ℘.
- 5.
- Calculate generalized observer (10) by substituting matrixes obtained in step 4.
2. Prerequisite
- a.
- ,
- b.
- , ,
- c.
- , .
3. Generalized Observer for FOCS
3.1. Lmis and Algorithm for Gain Matrices
4. Numerical Simulations
Algorithm 1 Generalized full order observer for a class of fractional order chaotic systems |
4.1. Fractional Order Lorenz Chaotic System
4.2. Fractional Order Gyro Chaotic System
5. Comparison between Observers for Dynamic Systems
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, G.; Huang, J. A new finance chaotic attractor. Int. J. Nonlin. Sci. 2007, 3, 213–220. [Google Scholar]
- Sundarapandian, V.; Aceng, S.; Sezgin, K.; Unal, C. A new finance chaotic system, its electronic circuit realization, passivity based synchronization and an application to voice encryption. Nonlin. Eng. 2019, 8, 193–205. [Google Scholar] [CrossRef]
- Iqbal, J.; Ahmad, S.; Marwan, M.; Shaukat, M. Control and numerical analysis for cancer chaotic system. Arch. Appl. Mech. 2020, 90, 2597–2608. [Google Scholar] [CrossRef]
- Uthamacumaran, A. A review of dynamical systems approaches for the detection of chaotic attractors in cancer networks. Patterns 2021, 2, 100226. [Google Scholar] [CrossRef] [PubMed]
- Debbouche, N.; Ouannas, A.; Batiha, I.; Grassi, G. Chaotic dynamics in a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives. Nonlin. Dyn. 2021, 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Behzad, G. On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators. Chaos Solitons Fractals 2021, 150, 111136. [Google Scholar] [CrossRef]
- Balram, D.; Sajan; Ankit, K. Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior. Math. Comp. Simul. 2021, 188, 164–192. [Google Scholar] [CrossRef]
- Cojocaru, V.P. Sensors based on chaotic systems for environmental monitoring. In Improving Disaster Resilience and Mitigation—IT Means and Tools; Springer: Dordrecht, The Netherlands, 2014; Volume 188, pp. 323–334. [Google Scholar] [CrossRef]
- Guoyuan, Q. Energy cycle of brushless DC motor chaotic system. Appl. Math. Model. 2017, 51, 686–697. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Yao, M.; Zhang, W.; Wen, B. Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aero. Sci. Technol. 2017, 68, 441–453. [Google Scholar] [CrossRef]
- Bi, H.; Qi, G.; Hu, J. Modeling and analysis of chaos and bifurcations for the attitude system of a Quadrotor Unmanned Aerial Vehicle. Complexity 2019, 2019, 6313925. [Google Scholar] [CrossRef]
- Yingjuan, Y.; Guoyuan, Q. Comparing mechanical analysis with generalized-competitive-mode analysis for the plasma chaotic system. Phy. Lett. A 2019, 383, 318–327. [Google Scholar] [CrossRef]
- Rashid, S.; Kalsoom, H.; Hammouch, Z.; Ashraf, R.; Baleanu, D.; Chu, Y.M. New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating h-convex functions in hilbert space. Symmetry 2020, 12, 222. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Vivas-Cortez, M.; Amer Latif, M.; Ahmad, H. Weighted midpoint Hermite-Hadamard-Fejer type inequalities in fractional calculus for harmonically convex functions. Fractal Fract. 2021, 5, 252. [Google Scholar] [CrossRef]
- Ates, A. Enhanced equilibrium optimization method with fractional order chaotic and application engineering. Neural Comput. Appl. 2021, 33, 9849–9876. [Google Scholar] [CrossRef]
- Fiaz, M.; Aqeel, M.; Marwan, M.; Sabir, M. Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems. Chaos Solitons Fractals 2022, 155, 111743. [Google Scholar] [CrossRef]
- Macias-Diaz, J.E. Fractional calculus & Mdash; Theory and Applications. Axioms 2022, 11, 43. [Google Scholar] [CrossRef]
- Cafagna, D.; Grassi, G. Bifurcation and chaos in the fractional order Chen system via a time domain approach. Int. J. Bif. Chaos 2008, 18, 1845–1863. [Google Scholar] [CrossRef]
- Liu, X.; Tang, D. Bifurcation and synchronization of a new fractional-order system. Int. J. Dyn. Cont. 2021. [Google Scholar] [CrossRef]
- Kumar, V.; Kumari, N. Stability and bifurcation analysis of fractional-order delayed prey–predator system and the effect of diffusion. Int. J. Bif. Chaos 2022, 32, 2250002. [Google Scholar] [CrossRef]
- Bhalekar, S.; Daftardar-Gejji, V. Synchronization of different fractional order chaotic systems using active control. Commun. Nonlin. Sci. Numer. Simul. 2010, 15, 3536–3546. [Google Scholar] [CrossRef]
- Hu, W.; Ding, D.; Zhang, Y.; Wang, N.; Liang, D. Hopf bifurcation and chaos in a fractional order delayed memristor-based chaotic circuit system. Optik 2017, 130, 189–200. [Google Scholar] [CrossRef]
- Ndolane, S. Qualitative analysis of class of fractional-order chaotic system via bifurcation and Lyapunov exponents notions. J. Math. 2021, 2021, 5548569. [Google Scholar] [CrossRef]
- Rajeev, K.; Sanjeev, K.; Sukhneet, K.; Shrishty, J. Time fractional generalized Korteweg-de Vries equation: Explicit series solutions and exact solutions. J. Fract. Calculus Nonlin. Sys. 2021, 1, 62–77. [Google Scholar] [CrossRef]
- Eman, Z. Numerical solution for multi-term fractional delay differential equations. J. Fract. Calculus Nonlin. Sys. 2021, 2, 1–12. [Google Scholar] [CrossRef]
- Qasem, M.A.M.; Mohamed, A.H.; Thabet, A. On the iterative methods for solving fractional initial value problems: New perspective. J. Fract. Calculus Nonlin. Sys. 2021, 1, 76–81. [Google Scholar] [CrossRef]
- Safiyeh, M.; Yaghoub, M.; Farhad, D.S. Numerical solution of fractional multi-delay differential equations. Int. J. Appl. Comput. Math. 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Avcı, İ.; Mahmudov, N.I. Numerical solutions for multi-term fractional order differential equations with fractional taylor operational matrix of fractional integration. Mathematics 2020, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Volos, C.K.; Pham, V.T.; Vaidyanathan, S.; Kyprianidis, I.M.; Stouboulos, I.N. Synchronization phenomena in coupled Colpitts circuits. J. Eng. Sci. Technol. Rev. 2015, 8, 142–151. [Google Scholar] [CrossRef]
- Mofid, O.; Mobayen, S.; Khooban, M.H. Sliding mode disturbance observer control based on adaptive synchronization in a class of fractional-order chaotic systems. Int. J. Adap. Cont. Signal Proc. 2019, 33, 462–474. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, H.; Lu, J.; Cai, G.; Qin, W. Synchronization for chaotic systems via mixed-objective dynamic output feedback robust model predictive control. J. Frank. Inst. 2017, 354, 4838–4860. [Google Scholar] [CrossRef]
- Açıkmeşe, B.; Corless, M. Observers for systems with nonlinearities satisfying incremental quadratic constraints. Automatica 2011, 47, 1339–1348. [Google Scholar] [CrossRef]
- Zhang, W.; Su, H.; Zhu, F.; Bhattacharyya, S.P. Improved exponential observer design for one-sided Lipschitz nonlinear systems. Int. J. Robust Nonlin. Cont. 2016, 26, 3958–3973. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Zhang, W.; Song, F. Exponential reduced-order observers for nonlinear systems satisfying incremental quadratic constraints. Circuits Syst. Signal Proc. 2018, 37, 3725–3738. [Google Scholar] [CrossRef]
- Gupta, M.K.; Tomar, N.K.; Darouach, M. Unknown inputs observer design for descriptor systems with monotone nonlinearities. Int. J. Robust Nonlin. Cont. 2018, 28, 5481–5494. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Su, H.; Yang, J. Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication. IEEE Trans. Sys. Man Cyber. 2018, 50, 5221–5232. [Google Scholar] [CrossRef]
- Sabir, M.; Marwan, M.; Ahmad, S.; Fiaz, M.; Khan, F. Observer and descriptor satisfying incremental quadratic constraint for class of chaotic systems and its applications in a quadrotor chaotic system. Chaos Solitons Fractals 2020, 137, 109874. [Google Scholar] [CrossRef]
- Liu, L.; Shang, Y.; Di, Y.; Fu, Z.; Cai, X. Impulsive functional observer design for fractional-order nonlinear systems satisfying incremental quadratic constraints. Circuits Syst. Signal Proc. 2022, 2022, 2022. [Google Scholar] [CrossRef]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994; Volume 15. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Arcak, M.; Kokotovic, P. Nonlinear observers: A circle criterion design and robustness analysis. Automatica 2001, 37, 1923–1930. [Google Scholar] [CrossRef]
- Diethelm, K. Smoothness properties of solutions of Caputo-type fractional differential equations. Fract. Calculus Appl. Anal. 2007, 10, 151–160. [Google Scholar]
- Li, C.; Song, Y.; Wang, F.; Wang, Z.; Li, Y. A bounded strategy of the mobile robot coverage path planning based on Lorenz chaotic system. Int. J. Adv. Rob. Syst. 2016, 13, 107. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Kumar, S. Study of chaos in chaotic satellite systems. Pramana 2018, 90, 13. [Google Scholar] [CrossRef]
- Abtahi, S.M. Melnikov-based analysis for chaotic dynamics of spin–orbit motion of a gyrostat satellite. Proceed. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2019, 233, 931–941. [Google Scholar] [CrossRef]
- Rabha, W.I. Stability and stabilizing of fractional complex Lorenz systems. Abst. Appl. Anal. 2013, 2013, 13. [Google Scholar] [CrossRef]
- Guoyuan, Q.; Xiaogang, Y. Modeling of a chaotic Gyrostat system and mechanism analysis of dynamics using force and energy. Complexity 2019, 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.H.; Lan, Y.H.; Ding, L.; Zhou, Y. Full-order and reduced-order observer design for a Class of fractional-order nonlinear systems. Asian J. Cont. 2016, 18, 1467–1477. [Google Scholar] [CrossRef]
- Ali, Z.; Muhammad, R.; Muhammad, A. Observer design for one-sided Lipschitz descriptor systems. Appl. Math. Model. 2016, 40, 2301–2311. [Google Scholar] [CrossRef]
- Assaad, J.; Omar, N.; Abdellatif, B.M.; Nabil, D.; Mohamed, A.H. On observer design for nonlinear caputo fractional-order systems. Asian J. Cont. 2018, 20, 1533–1540. [Google Scholar] [CrossRef]
- Younan, Z.; Wei, Z.; Wei, G.; Su, Y.; Fang, S. Exponential state observers for nonlinear systems with incremental quadratic constraints and output nonlinearities. J. Cont. Automat. Elec. Sys. 2018, 29, 127–135. [Google Scholar] [CrossRef]
- Lazaros, M.; Mahendra, K.G.; Vikas, M.; Marwan, M.; Christos, V. Observer design for rectangular descriptor systems with incremental quadratic constraints and nonlinear outputs—Application to secure communications. Int. J. Robust Nonlin. Cont. 2020, 30, 8139–8158. [Google Scholar] [CrossRef]
- Lazaros, M.; Aggelos, G.; Mahendra, K.G.; Christos, V.; Vikas, K.M.; Viet, T.P. Observers for rectangular descriptor systems with output nonlinearities: Application to secure communications and micro-controller implementation. Int. J. Dyn. Cont. 2020, 9, 530–540. [Google Scholar] [CrossRef]
Rule | Inequality | Condition | Matrix |
---|---|---|---|
Açıkmeşe et al. [32] | Incremental quadratic | Implicit relationship | |
Zhang et al. [33] | one-sided Lipschitz | ||
Zhou et al. [34] | Lipchitz | ||
Gupta et al. [35] | Generalized monotone | ||
Zhao et al. [34] | non decreasing |
Rule | IQC & | Order of System | Numbers of Nonlinear Outputs |
---|---|---|---|
Lan et al. [48] | No | Integer | 1 |
Zulfiqar et al. [49] | No | Integer | 1 |
Assaad et al. [50] | No | Fractional | 1 |
Zhao et al. [51] | Yes | Integer | 1 |
Moysis et al. [52] | No | Rectangular integer | 1 |
Moysis et al. [53] | Yes | Rectangular integer | 1 |
Zhao et al. [36] | Yes | Integer | 1 |
Liu et al. [38] | Yes | Fractional | 1 |
Our method | Yes | Integer/ Fractional | n |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marwan, M.; Abidin, M.Z.; Kalsoom, H.; Han, M. Generalized Full Order Observer Subject to Incremental Quadratic Constraint (IQC) for a Class of Fractional Order Chaotic Systems. Fractal Fract. 2022, 6, 189. https://doi.org/10.3390/fractalfract6040189
Marwan M, Abidin MZ, Kalsoom H, Han M. Generalized Full Order Observer Subject to Incremental Quadratic Constraint (IQC) for a Class of Fractional Order Chaotic Systems. Fractal and Fractional. 2022; 6(4):189. https://doi.org/10.3390/fractalfract6040189
Chicago/Turabian StyleMarwan, Muhammad, Muhammad Zainul Abidin, Humaira Kalsoom, and Maoan Han. 2022. "Generalized Full Order Observer Subject to Incremental Quadratic Constraint (IQC) for a Class of Fractional Order Chaotic Systems" Fractal and Fractional 6, no. 4: 189. https://doi.org/10.3390/fractalfract6040189
APA StyleMarwan, M., Abidin, M. Z., Kalsoom, H., & Han, M. (2022). Generalized Full Order Observer Subject to Incremental Quadratic Constraint (IQC) for a Class of Fractional Order Chaotic Systems. Fractal and Fractional, 6(4), 189. https://doi.org/10.3390/fractalfract6040189