Existence and Uniqueness of Mild Solution Where α ∈ (1,2) for Fuzzy Fractional Evolution Equations with Uncertainty
Abstract
:1. Introduction
2. Preliminaries
- (A1)
- u is a normal; that is, there exist such that .
- (A2)
- u is a fuzzy convex; that is, whenever and .
- (A3)
- u is a upper semi-continuous; that is, for any and there exists such that whenever .
- (A4)
- The closure of is compact.
- (1)
- is bounded non-decreasing left continuous function in and right continuous at 1;
- (2)
- is bounded non-decreasing left continuous function in and right continuous at 1;
- (3)
- (i)
- , for all ,
- (ii)
- A is continuous and compact,
- (iii)
- Then there exists such that .
- (i)
- if f is [(i)-γ]-differentiable fuzzy-valued function, thenor
- (ii)
- if f is [(i)-γ]-differentiable fuzzy-valued function, then
- (i)
- if f is [(i)-γ]-differentiable fuzzy-valued function,or
- (ii)
- if f is [(i)-γ]-differentiable fuzzy-valued function,
3. Fuzzy Fractional Integral Equation
4. Main Results
- (H1)
- and ,
- (H2)
- ,
- (J1)
- (J2)
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- .
- (K1)
- uniformly for positive and bounded x and y on ,
- (K2)
- .
5. Examples
- (i)
- ,
- (ii)
- (iii)
- ,
- (iv)
- (H1)
- where .
- (H2)
- , where ζ is constant, , and for .
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, B.; Nieto, J.J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58, 1838–1843. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Agarwal, R.P.; Alsaedi, A. On fractional differential equations and inclusions with nonlocal and average-valued (integral) boundary conditions. Adv. Differ. Equ. 2016, 2016, 80. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Mansouri, S.S.; Gachpazan, M.; Fard, O.S. Existence, uniqueness and stability of fuzzy fractional differential equations with local Lipschitz and linear growth conditions. Adv. Differ. Equ. 2017, 2017, 240. [Google Scholar] [CrossRef] [Green Version]
- Sakulrang, S.; Moore, E.J.; Sungnul, S.; de Gaetano, A. A fractional differential equation model for continuous glucose monitoring data. Adv. Differ. Equ. 2017, 2017, 150. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
- Salahshour, S.; Allahviranloo, T.; Abbasbandy, S. Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1372–1381. [Google Scholar] [CrossRef]
- Chidouh, A.; Guezane-Lakoud, A.; Bebbouchi, R. Positive solutions for an oscillator fractional initial value problem. J. Appl. Math. Comput. 2017, 54, 57–68. [Google Scholar] [CrossRef]
- Chidouh, A.; Guezane-Lakoud, A.; Bebbouchi, R. Positive solutions of the fractional relaxation equation using lower and upper solutions. Vietnam. J. Math. 2016, 44, 739–748. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S. A Krasnoselskii–Krein-type uniqueness result for fractional differential equations. Nonlinear Anal. Theory Methods Appl. 2009, 71, 3421–3424. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S. Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal. 2009, 71, 2886–2889. [Google Scholar] [CrossRef]
- Yoruk, F.; Bhaskar, T.G.; Agarwal, R.P. New uniqueness results for fractional differential equations. Appl. Anal. 2013, 92, 259–269. [Google Scholar] [CrossRef]
- Ahmadian, A.; Salahshour, S.; Baleanu, D.; Amirkhani, H.; Yunus, R. Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose. J. Comput. Phys. 2015, 294, 562–584. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Rufián-Lizana, A.; Román-Flores, H.; Jiménez-Gamero, M.D. Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 2013, 219, 49–67. [Google Scholar] [CrossRef]
- Malinowski, M.T. Existence theorems for solutions to random fuzzy differential equations. Nonlinear Anal. Theory Methods Appl. 2010, 73, 1515–1532. [Google Scholar] [CrossRef]
- Alikhani, R.; Bahrami, F.; Jabbari, A. Existence of global solutions to nonlinear fuzzy Volterra integro-differential equations. Nonlinear Anal. Theory Methods Appl. 2012, 75, 1810–1821. [Google Scholar] [CrossRef]
- Li, Y.; Li, J. Stability analysis of fractional order systems based on T–S fuzzy model with the fractional order α: 0 < α < 1. Nonlinear Dyn. 2014, 78, 2909–2919. [Google Scholar]
- Liu, X.; Zhang, L.; Agarwal, P.; Wang, G. On some new integral inequalities of Gronwall–Bellman–Bihari type with delay for discontinuous functions and their applications. Indag. Math. 2016, 27, 1–10. [Google Scholar] [CrossRef]
- Malinowski, M.T. Random fuzzy fractional integral equations–theoretical foundations. Fuzzy Sets Syst. 2015, 265, 39–62. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- ElJaoui, E.; Melliani, S.; Chadli, L.S. Solving second-order fuzzy differential equations by the fuzzy Laplace transform method. Adv. Differ. Equ. 2015, 2015, 66. [Google Scholar] [CrossRef] [Green Version]
- Hoa, N.V.; Phu, N.D. Fuzzy functional integro-differential equations under generalized H-differentiability. J. Intell. Fuzzy Syst. 2014, 26, 2073–2085. [Google Scholar] [CrossRef]
- Hallaci, A.; Boulares, H.; Ardjouni, A. Existence and uniqueness for delay fractional differential equations with mixed fractional derivatives. Open J. Math. Anal. 2020, 4, 26–31. [Google Scholar] [CrossRef]
- Niazi, A.U.K.; He, J.; Shafqat, R.; Ahmed, B. Existence, uniqueness, and Eq–Ulam-type stability of fuzzy fractional differential equation. Fractal Fract. 2021, 5, 66. [Google Scholar] [CrossRef]
- Iqbal, N.; Niazi, A.U.K.; Shafqat, R.; Zaland, S. Existence and Uniqueness of Mild Solution for Fractional-Order Controlled Fuzzy Evolution Equation. J. Funct. Spaces 2021, 8, 5795065. [Google Scholar] [CrossRef]
- Baleanu, D.; Khan, H.; Jafari, H.; Khan, R.A.; Alipour, M. On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions. Adv. Differ. Equ. 2015, 2015, 318. [Google Scholar] [CrossRef] [Green Version]
- Souahi, A.; Guezane-Lakoud, A.; Hitta, A. On the existence and uniqueness for high order fuzzy fractional differential equations with uncertainty. Adv. Fuzzy Syst. 2016, 2016, 5246430. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, H.J. Fuzzy Set Theory—And Its Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- San, D.; Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Mainardi, F.; Paradisi, P.; Gorenflo, R. Probability Distributions Generated by Fractional Diffusion Equations. arXiv 2007, arXiv:0704.0320. [Google Scholar]
- Travis, C.C.; Webb, G.F. Cosine families and abstract nonlinear second order differential equations. Acta Math. Hung. 1978, 32, 75–96. [Google Scholar] [CrossRef]
- Smart, D.R. Fixed Point Theorems; Cup Archive; University Press Cambridge: Cambridge, UK, 1980; Volume 66. [Google Scholar]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications: III: Variational Methods and Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Allahviranloo, T.; Abbasbandy, S.; Shahryari, M.R.; Salahshour, S.; Baleanu, D. On Solutions of Linear Fractional Differential Equations with Uncertainty. Abstr. Appl. Anal. 2013, 2013, 178378. Available online: https://www.hindawi.com/journals/aaa/2013/178378/ (accessed on 27 December 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafqat, R.; Niazi, A.U.K.; Jeelani, M.B.; Alharthi, N.H. Existence and Uniqueness of Mild Solution Where α ∈ (1,2) for Fuzzy Fractional Evolution Equations with Uncertainty. Fractal Fract. 2022, 6, 65. https://doi.org/10.3390/fractalfract6020065
Shafqat R, Niazi AUK, Jeelani MB, Alharthi NH. Existence and Uniqueness of Mild Solution Where α ∈ (1,2) for Fuzzy Fractional Evolution Equations with Uncertainty. Fractal and Fractional. 2022; 6(2):65. https://doi.org/10.3390/fractalfract6020065
Chicago/Turabian StyleShafqat, Ramsha, Azmat Ullah Khan Niazi, Mdi Begum Jeelani, and Nadiyah Hussain Alharthi. 2022. "Existence and Uniqueness of Mild Solution Where α ∈ (1,2) for Fuzzy Fractional Evolution Equations with Uncertainty" Fractal and Fractional 6, no. 2: 65. https://doi.org/10.3390/fractalfract6020065
APA StyleShafqat, R., Niazi, A. U. K., Jeelani, M. B., & Alharthi, N. H. (2022). Existence and Uniqueness of Mild Solution Where α ∈ (1,2) for Fuzzy Fractional Evolution Equations with Uncertainty. Fractal and Fractional, 6(2), 65. https://doi.org/10.3390/fractalfract6020065