Author Contributions
Validation, H.A.; formal analysis, E.A., C.P.; investigation, M.S., H.A., E.A., C.P.; writing—original draft preparation, M.S.; writing—review and editing, H.A.; supervision, M.S.; funding acquisition, C.P. All authors have read and agreed to the published version of the manuscript.
Table 1.
The values of the optimal initial guess, , objective functions and the corresponding errors with and no regularisation parameters for Example 1.
Table 1.
The values of the optimal initial guess, , objective functions and the corresponding errors with and no regularisation parameters for Example 1.
| | | Objective Functions | -Error | RMSE |
---|
Without noise | 25 | | | 4.3884 | 1.4418 |
50 | | 6.1682 | 5.0114 | 1.7985 |
With noise 5% | 25 | | 2.1799 | 2.1210 | |
50 | | | 1.0113 | |
Table 2.
The values of the optimal initial guess, , objective functions and the corresponding errors using the regularisation parameters with M = N = 25 for Example 1.
Table 2.
The values of the optimal initial guess, , objective functions and the corresponding errors using the regularisation parameters with M = N = 25 for Example 1.
| | | | Objective Functions | -Error | RMSE |
---|
Without noise | | | | | 2.6100 | 1.0249 |
| | | | |
| | | | |
| | | | | |
| | 1.2470 | 2.8593 | |
| | 5.8688 | | |
With noise 5% | | | | | | |
| | | | |
| | | | |
| | | | | |
| | 1.2775 | | |
| | 5.9897 | 3.3646 | 2.0861 |
Table 3.
The values of the optimal initial guess, , objective functions and the corresponding errors using the regularisation parameters with M = N = 50 for Example 1.
Table 3.
The values of the optimal initial guess, , objective functions and the corresponding errors using the regularisation parameters with M = N = 50 for Example 1.
| | | | Objective Functions | -Error | RMSE |
---|
Without noise | | | | 3.4092 | 4.6998 | 1.726 |
| | 2.4650 | | |
| | | | |
| | | | 4.7363 | 1.8483 |
| | | 4.6546 | 1.9311 |
| | | 1.2983 | 1.5821 |
With noise 5% | | | | 1.2600 | 1.5259 | |
| | | 1.0640 | |
| | | | |
| | | 1.1694 | 4.8164 | 1.6659 |
| | | 3.2081 | 1.0049 |
| | | 4.4080 | 1.9817 |
Table 4.
The values of the minimal objective functions and the corresponding errors with initial guess , obtained (with/no) selecting the optimal regularisation parameters with for Example 1.
Table 4.
The values of the minimal objective functions and the corresponding errors with initial guess , obtained (with/no) selecting the optimal regularisation parameters with for Example 1.
| With/No Noise | With/No Regularisation | | | Objective Function | -Error | RMSE |
---|
25 | no | no | | | | 4.3884 | 1.4418 |
with | 0 | | | | |
with | no | | | 2.1799 | 2.1210 | |
with | 0 | | | | |
50 | no | no | | | 6.1682 | 5.0114 | 1.7985 |
with | 0 | | | | |
with | no | | | | 1.0113 | |
with | 0 | | | | |
Table 5.
The values of the optimal initial guess, , objective functions and the corresponding errors for Example 2 with and no regularisation parameters.
Table 5.
The values of the optimal initial guess, , objective functions and the corresponding errors for Example 2 with and no regularisation parameters.
| | | Objective Functions | -Error | RMSE |
---|
Without noise | 25 | | | | |
50 | | | | 1.2263 |
With noise 5% | 25 | | | 1.9251 | 1.9305 |
50 | | | 4.5130 | 1.8355 |
Table 6.
The values of the optimal initial guess, , objective functions and the corresponding errors using the regularisation parameters with for Example 2.
Table 6.
The values of the optimal initial guess, , objective functions and the corresponding errors using the regularisation parameters with for Example 2.
| | | | Objective Functions | -Error | RMSE |
---|
Without noise | | | | | | |
| | | | |
| | | | |
| | | | 1.5634 | 1.3413 |
| | 5.9128 | | |
| | | 1.9664 | 2.9192 |
With noise 5% | | | | | 1.9251 | 1.9396 |
| | 5.4494 | | |
| | | | |
| | | 3.4257 | 4.6055 | 2.1547 |
| | 5.9130 | | |
| | | 1.9654 | 2.9119 |
Table 7.
The values of the optimal initial guess, , objective functions and the corresponding errors using the regularisation parameters with M = N = 50 for Example 2.
Table 7.
The values of the optimal initial guess, , objective functions and the corresponding errors using the regularisation parameters with M = N = 50 for Example 2.
| | | | Objective Functions | -Error | RMSE |
---|
Without noise | | | | | | 1.2749 |
| | | | 1.0192 |
| | 3.8174 | | 1.3288 |
| | | 2.0732 | 6.4408 | 2.9474 |
| | 3.6352 | 5.2101 | 3.879 |
| | | | 7.6963 |
With noise 5% | | | | | | 1.1744 |
| | | | |
| | | | |
| | | | | |
| | 7.0388 | | 1.1551 |
| | | | |
Table 8.
The values of the minimal objective functions and the corresponding errors with initial guess, , obtained (with/no) selecting the optimal regularisation parameters with for Example 2.
Table 8.
The values of the minimal objective functions and the corresponding errors with initial guess, , obtained (with/no) selecting the optimal regularisation parameters with for Example 2.
| With/No Noise | With/No Regularisation | | | Objective Function | -Error | RMSE |
---|
25 | no | no | | | | | |
with | 0 | | | | |
with | no | | | | 1.9251 | 1.9305 |
with | 0 | | | | |
50 | no | no | | | | | 1.2263 |
with | 0 | | | | 1.0192 |
with | no | | | | 4.5130 | 1.8355 |
with | 0 | | | | |