Analytical Study on Sodium Alginate Based Hybrid Nanofluid Flow through a Shrinking/Stretching Sheet with Radiation, Heat Source and Inclined Lorentz Force Effects
Abstract
:1. Introduction
2. Formulation of the Problem
3. Analytical Solution of Flow and Thermal Field
4. Graphical Results and Discussion
5. Conclusions
- SA based MHD radiative hybrid nanofluid velocity slows down the presence of the inclined magnetic field, the Casson parameter, and the nanoparticles. The presence of both shrinking and stretching enhanced the thickness of the velocity surface layer.
- The SA based MHD radiative hybrid nanofluid thermal conduction ability is enhanced when the values of the hybrid nanoparticle, Eckert number, Casson parameter, heat source, inclined magnetic field, and radiation parameter increase.
- The SA based hybrid nanofluid heat transfer rate is improved with the enhancing value of the heat source, and it decreases with the enhancing value of the radiation parameter, the Casson parameter, and the Eckert number.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | constant parameter [] |
Uniform Magnetic field strength [] | |
Specific heat (SA) [] | |
specific heat capacity [] | |
Specific heat () [] | |
Specific heat of hybrid nanofluid [] | |
Eckert number | |
Dimensionless velocity | |
thermal conductivity (SA) [] | |
thermal conductivity [] | |
thermal conductivity [] | |
Hybrid nanofluid thermal conductivity [] | |
M | Magnetic parameter |
Radiation parameter | |
Prandtl number | |
T | hybrid nanofluid Temperature [K] |
Surface temperature [K] | |
Ambient temperature [K] | |
Greek Symbols | |
shrinking/Stretching parameter | |
inclined angle parameter | |
Viscoplastic parameter | |
Hybrid nanosolid volume fraction | |
nanosolid volume fraction | |
nanosolid volume fraction | |
Plastic dynamic viscosity [] | |
SA dynamic viscosity [] | |
Hybrid nanofluid dynamic viscosity [] | |
SA density [] | |
density [] | |
density [] | |
Hybrid nanofluid density [] | |
electric conductivity (SA) [] | |
electric conductivity () [] | |
electric conductivity [] | |
Hybrid nanofluid electric conductivity [] | |
Similarity variable | |
Dimensionless form of temperature | |
Subscripts | |
Copper | |
Iron oxide | |
Hybrid nanofluid |
References
- Hayat, T.; Nadeem, S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 2017, 7, 2317–2324. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Groşan, T.; Pop, I. Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. Int. Commun. Heat Mass Transf. 2020, 114, 104565. [Google Scholar] [CrossRef]
- Gholinia, M.; Armin, M.; Ranjbar, A.; Ganji, D. Numerical thermal study on CNTs/C2H6O2--H2O hybrid base nanofluid upon a porous stretching cylinder under impact of magnetic source. Case Stud. Therm. Eng. 2019, 14, 100490. [Google Scholar] [CrossRef]
- Tian, M.W.; Rostami, S.; Aghakhani, S.; Goldanlou, A.S.; Qi, C. A techno-economic investigation of 2D and 3D configurations of fins and their effects on heat sink efficiency of MHD hybrid nanofluid with slip and non-slip flow. Int. J. Mech. Sci. 2021, 189, 105975. [Google Scholar] [CrossRef]
- Saeed, A.; Bilal, M.; Gul, T.; Kumam, P.; Khan, A.; Sohail, M. Fractional order stagnation point flow of the hybrid nanofluid towards a stretching sheet. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zubair, T.; Usman, M.; Hamid, M.; Sohail, M.; Nazir, U.; Nisar, K.S.; Vijayakumar, V. Computational analysis of radiative Williamson hybrid nanofluid comprising variable thermal conductivity. Jpn. J. Appl. Phys. 2021, 60, 087004. [Google Scholar] [CrossRef]
- Chu, Y.M.; Nazir, U.; Sohail, M.; Selim, M.M.; Lee, J.R. Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 2021, 5, 119. [Google Scholar] [CrossRef]
- Aghahadi, M.H.; Niknejadi, M.; Toghraie, D. An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids. J. Mol. Struct. 2019, 1197, 497–507. [Google Scholar] [CrossRef]
- Shahsavar, A.; Godini, A.; Sardari, P.T.; Toghraie, D.; Salehipour, H. Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. J. Therm. Anal. Calorim. 2019, 137, 1031–1043. [Google Scholar] [CrossRef]
- Barnoon, P.; Toghraie, D.; Eslami, F.; Mehmandoust, B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: Single-phase and two-phase approaches. Comput. Math. Appl. 2019, 77, 662–692. [Google Scholar] [CrossRef]
- Swain, K.; Mebarek-Oudina, F.; Abo-Dahab, S. Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J. Therm. Anal. Calorim. 2021, 1–10. [Google Scholar] [CrossRef]
- Mebarek-Oudina, F.; Fares, R.; Aissa, A.; Lewis, R.; Abu-Hamdeh, N. Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. Int. Commun. Heat Mass Transf. 2021, 125, 105279. [Google Scholar] [CrossRef]
- Mebarek-Oudina, F.; Reddy, N.K.; Sankar, M. Heat source location effects on buoyant convection of nanofluids in an annulus. In Advances in Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 923–937. [Google Scholar]
- Hatami, M.; Ganji, D. Heat transfer and flow analysis for SA-TiO2 non-Newtonian nanofluid passing through the porous media between two coaxial cylinders. J. Mol. Liq. 2013, 188, 155–161. [Google Scholar] [CrossRef]
- Akinshilo, A.T.; Olofinkua, J.O.; Olaye, O. Flow and heat transfer analysis of the Sodium Alginate conveying Copper Nanoparticles between two parallel plates. J. Appl. Comput. Mech. 2017, 3, 258–266. [Google Scholar]
- Hussanan, A.; Qasim, M.; Chen, Z.M. Heat transfer enhancement in sodium alginate based magnetic and non-magnetic nanoparticles mixture hybrid nanofluid. Phys. A Stat. Mech. Appl. 2020, 550, 123957. [Google Scholar] [CrossRef]
- Aly, E.H.; Pop, I. MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid. Powder Technol. 2020, 367, 192–205. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Mehryan, S.; Shafee, A.; Sheremet, M.A. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J. Mol. Liq. 2019, 277, 388–396. [Google Scholar] [CrossRef]
- Izadi, M.; Sheremet, M.A.; Mehryan, S. Natural convection of a hybrid nanofluid affected by an inclined periodic magnetic field within a porous medium. Chin. J. Phys. 2020, 65, 447–458. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Shah, Z.; Shafee, A.; Kumam, P.; Babazadeh, H. Lorentz force impact on hybrid nanofluid within a porous tank including entropy generation. Int. Commun. Heat Mass Transf. 2020, 116, 104635. [Google Scholar] [CrossRef]
- Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I. MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chin. J. Phys. 2020, 66, 630–644. [Google Scholar] [CrossRef]
- Tlili, I.; Bhatti, M.; Hamad, S.M.; Barzinjy, A.A.; Sheikholeslami, M.; Shafee, A. Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects. Phys. A Stat. Mech. Appl. 2019, 534, 122136. [Google Scholar] [CrossRef]
- Jamaludin, A.; Naganthran, K.; Nazar, R.; Pop, I. MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. Eur. J. Mech.-B/Fluids 2020, 84, 71–80. [Google Scholar] [CrossRef]
- Khan, U.; Shafiq, A.; Zaib, A.; Baleanu, D. Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects. Case Stud. Therm. Eng. 2020, 21, 100660. [Google Scholar] [CrossRef]
- Sulochana, C.; Kumar, T.P. Heat and Mass Transfer of Ag-Fe3O4/H2O hybrid nanofluid flow over a nonlinear stretching sheet. J. Crit. Rev. 2020, 7, 1566–1573. [Google Scholar]
- Aziz, A.; Jamshed, W.; Ali, Y.; Shams, M. Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation. Discret. Contin. Dyn. Syst.-S 2020, 13, 2667. [Google Scholar] [CrossRef] [Green Version]
- Casson, N. A flow equation for pigment-oil suspensions of the printing ink type. In Rheology of Disperse Systems; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- Turkyilmazoglu, M. Multiple analytic solutions of heat and mass transfer of magnetohydrodynamic slip flow for two types of viscoelastic fluids over a stretching surface. J. Heat Transf. 2012, 134, 071701. [Google Scholar] [CrossRef]
- Govindaraju, M.; Ganesh, N.V.; Ganga, B.; Hakeem, A.A. Entropy generation analysis of magneto hydrodynamic flow of a nanofluid over a stretching sheet. J. Egypt. Math. Soc. 2015, 23, 429–434. [Google Scholar] [CrossRef]
- Hamad, M. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. Int. Commun. Heat Mass Transf. 2011, 38, 487–492. [Google Scholar] [CrossRef]
- Kameswaran, P.; Narayana, M.; Sibanda, P.; Murthy, P. Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects. Int. J. Heat Mass Transf. 2012, 55, 7587–7595. [Google Scholar] [CrossRef]
- Grubka, L.; Bobba, K. Heat transfer characteristics of a continuous, stretching surface with variable temperature. J. Heat Transf. 1985, 107, 248–250. [Google Scholar] [CrossRef]
SA | ||||
---|---|---|---|---|
989 | 997.1 | 8933 | 5180 | |
4175 | 4179 | 385 | 670 | |
0.6376 | 0.613 | 401 | 9.7 | |
0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammachukiattikul, P.; Govindaraju, M.; Sohail, M.; Vadivel, R.; Gunasekaran, N.; Askar, S. Analytical Study on Sodium Alginate Based Hybrid Nanofluid Flow through a Shrinking/Stretching Sheet with Radiation, Heat Source and Inclined Lorentz Force Effects. Fractal Fract. 2022, 6, 68. https://doi.org/10.3390/fractalfract6020068
Hammachukiattikul P, Govindaraju M, Sohail M, Vadivel R, Gunasekaran N, Askar S. Analytical Study on Sodium Alginate Based Hybrid Nanofluid Flow through a Shrinking/Stretching Sheet with Radiation, Heat Source and Inclined Lorentz Force Effects. Fractal and Fractional. 2022; 6(2):68. https://doi.org/10.3390/fractalfract6020068
Chicago/Turabian StyleHammachukiattikul, P., M. Govindaraju, Muhammad Sohail, R. Vadivel, Nallappan Gunasekaran, and Sameh Askar. 2022. "Analytical Study on Sodium Alginate Based Hybrid Nanofluid Flow through a Shrinking/Stretching Sheet with Radiation, Heat Source and Inclined Lorentz Force Effects" Fractal and Fractional 6, no. 2: 68. https://doi.org/10.3390/fractalfract6020068
APA StyleHammachukiattikul, P., Govindaraju, M., Sohail, M., Vadivel, R., Gunasekaran, N., & Askar, S. (2022). Analytical Study on Sodium Alginate Based Hybrid Nanofluid Flow through a Shrinking/Stretching Sheet with Radiation, Heat Source and Inclined Lorentz Force Effects. Fractal and Fractional, 6(2), 68. https://doi.org/10.3390/fractalfract6020068