A Generalization of Multifractional Brownian Motion
Abstract
:1. Introduction
2. Long Range Dependence (LRD)
- (i)
- For all admissible , MFBM has persistence of signs LRD in the sense of Definition 2.
- (ii)
- Also, it has persistence of magnitudes LRD taken in the sense of Definition 2, when
- (a)
- , and for large t.
- (b)
- , for all and large t.
- (i)
- (ii)
- In addition,
- (i)
- , andfor sufficiently large t.
- (ii)
- , for alland sufficiently large t.
3. The nth Order Multifractional Brownian Motion (n-MFBM)
Covariance Structure of n-MFBM
4. Conclusions
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MFBM | Multifractional Brownian motion |
FBM | Fractional Brownian motion |
LRD | Long range dependence |
SRD | Short range dependence |
n-MFBM | nth order multifractional Brownian motion. |
References
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional Gaussian noises and applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Grahovac, D.; Leonenko, N.N.; Taqqu, M.S. Scaling properties of the empirical structure function of linear fractional stable motion and estimation of its parameters. J. Stat. Phys. 2015, 158, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Echelard, A.; Véhel, J.L.; Barriére, O. Terrain Modeling with Multifractional Brownian Motion and Self-regulating Processes. In Proceedings of the International Conference on Computer Vision and Graphics (IICCVG 2010), Warsaw, Poland, 20–22 September 2010; pp. 342–351. [Google Scholar]
- Islam, A.; Reza, S.M.; Iftekharuddin, K.M. Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans. Biomed. Eng. 2013, 60, 3204–3215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beran, J. Statistics for Long-Memory Processes; Chapman & Hall: New York, NY, USA, 1994. [Google Scholar]
- Perrin, E.; Harba, R.; Berzin, C.; Iribarren, I.; Bonami, A. nth-Order Fractional Brownian Motion and Fractional Gaussian Noises. IEEE Trans. Signal Process. 2001, 49, 1049–1059. [Google Scholar] [CrossRef]
- Ayache, A.; Taqqu, M.S. Multifractional processes with random exponent. Publ. Mat. 2005, 49, 459–486. [Google Scholar] [CrossRef] [Green Version]
- Peltier, R.; Lévy-Vehel, J. Multifractional Brownian Motion: Definition and Preliminary Results; Res. Rept. 2645; INRIA: Le Chesnay-Rocquencourt, France, 1995; Available online: https://hal.inria.fr/inria-00074045/document (accessed on 26 January 2021).
- Chan, G.; Wood, A.T. Simulation of multifractional Brownian motion. In COMPSTAT; Springer: Berlin/Heidelberg, Germany, 1998; pp. 233–238. [Google Scholar]
- Stoev, S.A.; Taqqu, M.S. How rich is the class of multifractional Brownian motions? Stoch. Process. Appl. 2006, 116, 200–221. [Google Scholar] [CrossRef] [Green Version]
- Benassi, A.; Jaffard, S.; Roux, D. Elliptic Gaussian random processes. Rev. Mat. Iberoam. 1997, 13, 19–90. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S. From self-similarity to local self-similarity: The estimation problem. In Fractals: Theory and Applications in Engineering; Dekking, M., Lévy-Véhel, J., Lutton, E., Tricot, C., Eds.; Springer: London, UK, 1999. [Google Scholar]
- Ayache, A.; Cohen, S.; Vehel, J.L. The covariance structure of multifractional Brownian motion with application to long-range dependence. In Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 5–9 June 2000. [Google Scholar]
- Stoev, S.; Taqqu, M.S. Stochastic Properties of the Linear Multifractional Stable Motion. Adv. Appl. Probab. 2004, 36, 1085–1115. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Sabzikar, F. Tempered Fractional Stable Motion. J. Theor. Probab. 2016, 29, 681–706. [Google Scholar] [CrossRef]
- Kawai, R. Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails. J. Stat. Phys. 2016, 165, 126–152. [Google Scholar] [CrossRef]
- Ayache, A.; Lévy-Véhel, J. Generalized multifractional Brownian motion: Definition and preliminary results. In Fractals: Theory and Applications in Engineering; Dekking, M., Lévy-Véhel, J., Lutton, E., Tricot, C., Eds.; Springer: London, UK, 1999; pp. 17–32. [Google Scholar]
- Heyde, C.C. On Modes of Long-Range Dependence. J. Appl. Prob. 2002, 39, 882–888. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S. Distributions in Statistics: Continuous Multivariate Distributions; John Wiley: New York, NY, USA, 1972. [Google Scholar]
- Chandramouli, R.; Ranganathan, N. Computing the bivariate Gaussian probability integral. IEEE Signal Process. Lett. 1999, 6, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Nabeya, S. Absolute moments in 2-dimensional normal distribution. Ann. Inst. Stat. Math. 1951, 3, 2–6. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Samoradnitsky, G.; Taqqu, M.S. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance; Chapman and Hall/CRC: Boca Raton, FL, USA, 1994. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, N.; Kumar, A.; Leonenko, N. A Generalization of Multifractional Brownian Motion. Fractal Fract. 2022, 6, 74. https://doi.org/10.3390/fractalfract6020074
Gupta N, Kumar A, Leonenko N. A Generalization of Multifractional Brownian Motion. Fractal and Fractional. 2022; 6(2):74. https://doi.org/10.3390/fractalfract6020074
Chicago/Turabian StyleGupta, Neha, Arun Kumar, and Nikolai Leonenko. 2022. "A Generalization of Multifractional Brownian Motion" Fractal and Fractional 6, no. 2: 74. https://doi.org/10.3390/fractalfract6020074
APA StyleGupta, N., Kumar, A., & Leonenko, N. (2022). A Generalization of Multifractional Brownian Motion. Fractal and Fractional, 6(2), 74. https://doi.org/10.3390/fractalfract6020074