Reduced-Order H∞ Filter Design for Singular Fractional-Order Systems
Abstract
:1. Introduction
2. Problem Formulation and Preliminaries
3. Main Results
4. Illustrative Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Ahn, H.S.; Chen, Y.Q. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 2008, 44, 2985–2988. [Google Scholar] [CrossRef]
- Farges, C.; Moze, M.; Sabatier, J. Pseudo-state feedback stabilization of commensurate fractional order systems. Automatica 2010, 46, 1730–1734. [Google Scholar] [CrossRef]
- Lu, J.G.; Chen, G.R. Robust stability and stabilization of fractional-order interval systems: An LMI approach. IEEE Trans. Autom. Control 2009, 56, 1294–1299. [Google Scholar]
- Lu, J.G.; Chen, Y.Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α: The 0 < α < 1 case. IEEE Trans. Autom. Control 2010, 55, 152–158. [Google Scholar]
- Sabatier, J.; Moze, M.; Farges, C. LMI stability conditions for fractional order systems. Comput. Math. Appl. 2010, 59, 1594–1609. [Google Scholar] [CrossRef]
- Liang, S.; Wei, Y.H.; Pan, J.W.; Gao, Q.; Wang, Y. Bounded real lemmas for fractional order systems. Int. J. Autom. Comput. 2015, 12, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Ibrir, S.; Bettayeb, M. New sufficient conditions for observer-based control of fractional-order uncertain systems. Automatica 2015, 59, 216–223. [Google Scholar] [CrossRef]
- Lin, C.; Chen, B.; Wang, Q.G. Static output feedback stabilization for fractional-order systems in T-S fuzzy models. Neurocomputing 2016, 218, 354–358. [Google Scholar] [CrossRef]
- Wei, Y.H.; Chen, Y.Q.; Cheng, S.S.; Wang, Y. Completeness on the stability criierion of Fractional order LTI systems. Fract. Calc. Appl. Anal. 2017, 20, 159–172. [Google Scholar] [CrossRef]
- Guo, Y.; Lin, C.; Chen, B.; Wang, Q.G. Necessary and sufficient conditions of dynamic output feedback stabilization for fractional-order systems with order 0 < α < 1. Sci. China Inf. Sci. 2019, 62, 199–201. [Google Scholar]
- Xu, S.Y.; Lam, J. Reduced-order H∞ filtering for singular systems. Syst. Control Lett. 2007, 56, 48–57. [Google Scholar] [CrossRef]
- Yu, Y.; Jiao, Z.; Sun, C.Y. Sufficient and necessary condition of admissibility for fractional-order singular systems. Acta Autom. Sin. 2013, 39, 2160–2164. [Google Scholar] [CrossRef]
- Zhang, X.F.; Chen, Y.Q. Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0 < α < 1 case. ISA Trans. 2018, 82, 42–50. [Google Scholar]
- Zhang, X.F.; Yan, Y.Q. Admissibility of fractional order descriptor systems based on complex variables: An LMI approach. Fractal Fract. 2020, 4, 8. [Google Scholar]
- Marir, S.; Chadli, M.; Bouagada, D. New admissibility conditions for singular linear continuous time fractional-order systems. J. Frankl. Inst. 2017, 354, 752–766. [Google Scholar] [CrossRef]
- N’Doye, I.; Darouach, M.; Zasadzinsk, I.M.; Radhy, N.E. Robust stabilization of uncertain descriptor fractional-order systems. Automatica 2013, 49, 1907–1913. [Google Scholar] [CrossRef]
- Ji, Y.D.; Qiu, J. Stabilization of fractional-order singular uncertain systems. ISA Trans. 2015, 56, 53–64. [Google Scholar] [CrossRef]
- Wei, Y.H.; Peter, W.T.; Yao, Z.; Wang, Y. The output feedback control synthesis for a class of singular fractional order systems. ISA Trans. 2017, 69, 1–9. [Google Scholar] [CrossRef]
- Guo, Y.; Lin, C.; Chen, B.; Wang, Q.G. Stabilization for Singular Fractional-Order Systems via Static Output Feedback. IEEE Access 2018, 6, 71678–71684. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhao, Z.; Wang, Q.G. Static and dynamic output feedback stabilisation of descriptor fractional order systems. IET Control Theory Appl. 2020, 14, 324–333. [Google Scholar] [CrossRef]
- Lin, C.; Chen, B.; Shi, P.; Yu, J.P. Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems. Syst. Control Lett. 2018, 112, 31–35. [Google Scholar] [CrossRef]
- Iwasaki, T.; Skelton, R.E. All Controllers for the General H∞ Control Problem: LMI Existence Conditions and State. Automatica 1994, 30, 1307–1317. [Google Scholar] [CrossRef]
- Farges, C.; Fadiga, L.; Sabatier, J. H∞ analysis and control of commensurate fractional order systems. Mechatronics 2013, 23, 772–780. [Google Scholar] [CrossRef]
- Shen, J.; Lam, J. State feedback H∞ control of commensurate fractional-order systems. Int. J. Syst. Sci. 2014, 45, 363–372. [Google Scholar] [CrossRef]
- Boukal, Y.; Boukal, M.; Darouach, M.; Zasadzinski, N.E. Robust H∞ observer-based control of fractional-order systems with gain parametrization. IEEE Trans. Autom. Control 2017, 62, 5710–5723. [Google Scholar] [CrossRef]
- Shen, J.; Lam, J.; Li, P. Reduced-order H∞ filtering for commensurat fractional-order systems. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 4411–4415. [Google Scholar]
- Grigoriadis, K.M. Optimal H∞ model reduction via linear matrix inequalities: Continuous-and discrete-time cases. Syst. Control Lett. 1995, 26, 321–333. [Google Scholar] [CrossRef]
- Grigoriadis, K.M.; Watson, J.T. Reduced-Order H∞ and L2-l∞ Filtering via Linear Matrix Inequalities. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 1326–1338. [Google Scholar] [CrossRef]
- Sun, F.C.; Liu, H.P.; He, K.Z. Reduced-order H∞ filtering for linear systems with Markovian jump parameters. Syst. Control Lett. 2005, 54, 739–746. [Google Scholar] [CrossRef]
- Bourouba, S.; Ladaci, A.C. Reduced order model approximation of fractional order systems using Differential Evolution algorithm Journal of Control. Autom. Electr. Syst. 2018, 29, 32–43. [Google Scholar] [CrossRef]
- Saxena, S.; Yogesh, V.; Arya, P.P. Reduced-order modeling of commensurate fractional-order systems. In Proceedings of the 14th International Conference on Control Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016. [Google Scholar]
- Zhang, Q.H.; Lu, J.G. H∞ control for singular fractional-order interval systems: The 0 < α < 1 case. ISA Trans. 2021, 110, 105–116. [Google Scholar]
- Sun, D.R.; Zhang, X.F. H∞ Control Of Singular Fractional-Order Systems. Master’s Thesis, Northeastern University, Shenyang, China, 2017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Lin, C.; Chen, B. Reduced-Order H∞ Filter Design for Singular Fractional-Order Systems. Fractal Fract. 2022, 6, 97. https://doi.org/10.3390/fractalfract6020097
Guo Y, Lin C, Chen B. Reduced-Order H∞ Filter Design for Singular Fractional-Order Systems. Fractal and Fractional. 2022; 6(2):97. https://doi.org/10.3390/fractalfract6020097
Chicago/Turabian StyleGuo, Ying, Chong Lin, and Bing Chen. 2022. "Reduced-Order H∞ Filter Design for Singular Fractional-Order Systems" Fractal and Fractional 6, no. 2: 97. https://doi.org/10.3390/fractalfract6020097
APA StyleGuo, Y., Lin, C., & Chen, B. (2022). Reduced-Order H∞ Filter Design for Singular Fractional-Order Systems. Fractal and Fractional, 6(2), 97. https://doi.org/10.3390/fractalfract6020097