Numerical Approximations for the Solutions of Fourth Order Time Fractional Evolution Problems Using a Novel Spline Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Results
2.2. Sextic Polynomial Spline Functions
- , .
2.3. Temporal Discretization
- ’s are non-negative when
- , as
2.4. The Stability Analysis
2.5. Space Discretization
2.6. Initial State
2.7. Truncation Error for the Spatial Direction
3. Results and Discussion
Algorithm 1: Coding algorithm for the proposed scheme |
Input b, N, k, K, and . Step 1. Define each sextic spline segment . Step 2. Construct consistency relation Equation (13) and two end Equations (14) and (15). Step 3. Approximate Caputo FD at time as in Equation (17). Step 4. Using the semi-discrete FD operator , the Equation (17) is converted to Equation (19). Step 5. Using SPS for space discretization to convert Equations (19) to (43). Step 6. Compute the elements of the vectors , , and . Step 7. Compute the elements of the matrices A, B and C. Step 8. Compute the elements of the matrice . |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. An Alternative Derivation
References
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Berdyshev, A.S.; Eshmatov, B.E.; Kadirkulov, B.J. Boundary value problems for fourth-order mixed type equation with fractional derivative. Electron. J. Differ. Equ. 2016, 36, 1–11. [Google Scholar]
- He, J.H. A new fractal derivation. Therm. Sci. 2011, 15, 145–147. [Google Scholar] [CrossRef]
- Wang, K.L.; Wang, H. A novel variational approach for fractal Ginzburg-Landau equation. Fractals 2021, 29, 2150205-131. [Google Scholar] [CrossRef]
- Wang, K.L. Exact solitary wave solution for fractal shallow water wave model by He’s variational method. Mod. Phys. Lett. B 2021, 22, 2150602. [Google Scholar] [CrossRef]
- He, J.H.; Ji, F.Y. Two-scale mathematics and fractional calculus for thermodynamics. Therm. Sci. 2019, 23, 2131–2133. [Google Scholar] [CrossRef]
- Wang, K.L. A study of the fractal foam drainage model in a microgravity space. Math. Methods Appl. Sci. 2021, 44, 10530–10540. [Google Scholar] [CrossRef]
- Yang, X.H.; Xu, D.; Zhang, H.X. Crank-Nicolson/quasi-wavelets method for solving fourth order partial integro-differential equation with a weakly singular kernel. J. Comput. Phys. 2013, 234, 317–329. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Z.; Li, H.; He, S. A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 2014, 243, 703–717. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, N.U.; Ayaz, M.; Mahmood, A.; Fatima, N. Numerical study of timefractional fourth-order differential equations with variable coefficients. J. King Saud Univ. Sci. 2011, 23, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, B.P.; Machado, J.A.T.; Behforooz, H. An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Solitons Fractals 2017, 102, 354–360. [Google Scholar] [CrossRef]
- Roul, P.; Goura, V.M.K.P.; Cavoretto, R. A numerical technique based on B-spline for a classof time-fractional diffusion equation. Numer. Methods Partial Differ. Equ. 2021, 1–20. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Agarwal, R.P.; Karapinar, E.; Kumari, P.S. Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 2019, 11, 686. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.A.; Baleanu, D.; Agarwal, P. A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations. J. Taibah Univ. Sci. 2020, 14, 963–974. [Google Scholar] [CrossRef]
- Hamasalh, F.K.; Muhammed, P.O. Computational non-polynomial spline function for solving fractional Bagely-Torvik equation. Math. Sci. Lett. 2017, 6, 83–87. [Google Scholar] [CrossRef]
- Pedas, A.; Vikerpuur, M. Spline Collocation for Multi-Term Fractional Integro-Differential Equations with Weakly Singular Kernels. Fractal Fract. 2021, 5, 90. [Google Scholar] [CrossRef]
- Youssri, Y.H. Orthonormal Ultraspherical Operational Matrix Algorithm for Fractal-Fractional Riccati Equation with Generalized Caputo Derivative. Fractal Fract. 2021, 5, 100. [Google Scholar] [CrossRef]
- Cardone, A.; Conte, D.; D’Ambrosio, R.; Paternoster, B. Multivalue Collocation Methods for Ordinary and Fractional Differential Equations. Mathematics 2022, 10, 185. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y. Numerical approach for solution to an uncertain fractional differential equation. Appl. Math. Comput. 2019, 343, 137–148. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. A powerful approach for fractional Drinfeld-Sokolov-Wilson equation with Mittag-Leffler law. Alex. Eng. J. 2019, 58, 1301–1311. [Google Scholar] [CrossRef]
- Mirzaee, F.; Samadyar, N. Implicit meshless method to solve 2D fractionalstochastic Tricomi-type equation defined onirregular domain occurring in fractal transonic flow. Numer. Methods Partial Differ. Equ. 2021, 37, 1781–1799. [Google Scholar] [CrossRef]
- Shen, L.; Zhu, S.; Liu, B.; Zhang, Z.; Cui, Y. Numerical implementation of nonlinear system offractional Volterra integral-differential equations by Legendre wavelet method and error estimation. Numer. Methods Partial Differ. Equ. 2021, 37, 1344–1360. [Google Scholar] [CrossRef]
- Khan, W.A. Numerical simulation of Chun–Hui He’s iteration method with applications in engineering. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 944–955. [Google Scholar] [CrossRef]
- Bueno-Orovio, A.; Kay, D.; Burrage, K. Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 2014, 54, 937–954. [Google Scholar] [CrossRef]
- Arqub, O.A.; Shawagfeh, N. Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media 2019, 22, 411–434. [Google Scholar] [CrossRef]
- Prakash, A.; Goyal, M.; Gupta, S. Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel equation. Nonlinear Eng. 2019, 8, 164–171. [Google Scholar] [CrossRef]
- Yaseen, M.; Abbas, M. An efficient computational technique based on cubic trigonometric B-splines for time fractional Burgers’ equation. Int. J. Comput. Math. 2020, 97, 725–738. [Google Scholar] [CrossRef] [Green Version]
- Mishra, H.K.; Nagar, A.K. He-Laplace method for linear and nonlinear partial differential equations. J. Appl. Math. 2012, 2012, 180315. [Google Scholar]
- Sene, N. Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. J. Fract. Calc. Nonlinear Syst. 2021, 2, 60–75. [Google Scholar] [CrossRef]
- Wahash, H.A.; Panchal, S.K. Positive solutions for generalized Caputo fractional differential equations using lower and upper solutions method. J. Fract. Calc. Nonlinear Syst. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Ji, P.Q.; Wang, J.; Lu, L.X.; Ge, C.F. Li-He’s modified homotopy perturbation method coupled with the energy method for the dropping shock response of a tangent nonlinear packaging system, Journal of Low Frequency Noise. Vib. Act. Control 2021, 40, 675–682. [Google Scholar]
k | K | |||
40 | 100 | |||
500 | ||||
1000 | ||||
80 | 100 | |||
500 | ||||
1000 | ||||
40 | 100 | |||
500 | ||||
1000 | ||||
80 | 100 | |||
500 | ||||
1000 |
k | K | |||
40 | 100 | |||
500 | ||||
1000 | ||||
80 | 100 | |||
500 | ||||
1000 | ||||
40 | 100 | |||
500 | ||||
1000 | ||||
80 | 100 | |||
500 | ||||
1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, G.; Abbas, M.; Tariq, H.; Sadaf, M.; Abdeljawad, T.; Alqudah, M.A. Numerical Approximations for the Solutions of Fourth Order Time Fractional Evolution Problems Using a Novel Spline Technique. Fractal Fract. 2022, 6, 170. https://doi.org/10.3390/fractalfract6030170
Akram G, Abbas M, Tariq H, Sadaf M, Abdeljawad T, Alqudah MA. Numerical Approximations for the Solutions of Fourth Order Time Fractional Evolution Problems Using a Novel Spline Technique. Fractal and Fractional. 2022; 6(3):170. https://doi.org/10.3390/fractalfract6030170
Chicago/Turabian StyleAkram, Ghazala, Muhammad Abbas, Hira Tariq, Maasoomah Sadaf, Thabet Abdeljawad, and Manar A. Alqudah. 2022. "Numerical Approximations for the Solutions of Fourth Order Time Fractional Evolution Problems Using a Novel Spline Technique" Fractal and Fractional 6, no. 3: 170. https://doi.org/10.3390/fractalfract6030170
APA StyleAkram, G., Abbas, M., Tariq, H., Sadaf, M., Abdeljawad, T., & Alqudah, M. A. (2022). Numerical Approximations for the Solutions of Fourth Order Time Fractional Evolution Problems Using a Novel Spline Technique. Fractal and Fractional, 6(3), 170. https://doi.org/10.3390/fractalfract6030170