The New Wave Structures to the Fractional Ion Sound and Langmuir Waves Equation in Plasma Physics
Abstract
:1. Introduction
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (vi)
- ;
- (v)
- If is differentiable, thus .
2. Unified Solver Technique
2.1. The First Family
2.2. The Second Family
2.3. The Third Family
3. Mathematical Analysis
3.1. Solutions of FISALWs Equation via the Unified Solver Method
3.1.1. The First Family of Solutions
3.1.2. The Second Family of Solutions
3.1.3. The Third Family of Solutions
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaplan, M.K.; Bekir, A.E. A novel analytical method for time-fractional differential equations. Optik 2016, 127, 8209–8214. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E. A note on Riccati-Bernoulli sub-ODE method combined with complex transform method applied to fractional differential equations. Nonlinear Eng. Model. Appl. 2018, 7, 279–285. [Google Scholar] [CrossRef]
- Zafar, A. Rational exponential solutions of conformable spacetime fractional equal width equations. Nonlinear Eng. 2019, 8, 350–355. [Google Scholar] [CrossRef]
- Foukrach, D. Approximate solution to a Bürgers system with time and space fractional derivatives using Adomian decomposition method. J. Interdiscip. Math. 2018, 21, 111–125. [Google Scholar] [CrossRef]
- Ray, S.S. New analytical exact solutions of time fractional kdV-KZK equation by Kudryashov methods. Chin. Phys. B 2016, 25, 040204. [Google Scholar]
- Sarwar, S.; Iqbal, S. Stability analysis, dynamical behavior and analytical solutions of nonlinear fractional differential system arising in chemical reaction. Chin. J. Phys. 2018, 56, 374–384. [Google Scholar] [CrossRef]
- Hosseini, K.; Samadani, F.; Kumar, D.; Faridi, M. New optical solitons of cubic-quartic nonlinear Schrödinger equation. Optik 2018, 157, 1101–1105. [Google Scholar] [CrossRef]
- Zhou, Q.; Sonmezoglu, A.; Ekici, M.; Mirzazadeh, M. Optical solitons of some fractional differential equations in nonlinear optics. J. Mod. Opt. 2017, 64, 2345–2349. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; AlKhidhr, H. Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation. Results Phys. 2020, 18, 103294. [Google Scholar] [CrossRef]
- Manafian, J. Application of the ITEM for the system of equations for the ion sound and Langmuir waves. Opt. Quantum Electron. 2017, 49, 17. [Google Scholar] [CrossRef]
- Younis, M.; Rizvi, S.T.R. Dispersive dark optical soliton in (2+1)-dimensions by ()-expansion with dual-power law nonlinearity. Optik 2015, 126, 5812–5814. [Google Scholar] [CrossRef]
- Ray, S.S.; Sahoo, S. A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada-Kotera equation. Rep. Math. Phys. 2015, 75, 63–72. [Google Scholar] [CrossRef]
- Faraz, N.; Khan, Y.; Jafari, H.; Yildirim, A.; Madani, M. Fractional variational iteration method via modified Riemann- Liouville derivative. J. King Saud Univ.-Sci. 2011, 23, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Khodadad, F.S.; Nazari, F.; Eslami, M.; Rezazadeh, H. Soliton solutions of the conformable fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity. Opt. Quantum Electron. 2017, 49, 384. [Google Scholar] [CrossRef]
- Hosseini, K.; Mayeli, P.; Ansari, R. Modified Kudryashov method for solving the conformable time fractional Klein-Gordon equations with quadratic and cubic nonlinearities. Optik 2017, 130, 737–742. [Google Scholar] [CrossRef]
- Zhang, S.; Zong, Q.-A.; Liu, D.; Gao, Q. A generalized exp-function method for fractional riccati differential equations. Commun. Fract. Calc. 2010, 1, 48–51. [Google Scholar]
- Lu, B. The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 2012, 395, 684–693. [Google Scholar] [CrossRef] [Green Version]
- Tong, B.; He, Y.; Wei, L.; Zhang, X. A generalized fractional sub-equation method for fractional differential equations with variable coefficients. Phys. Lett. A 2012, 376, 2588–2590. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Wang, K.J.; Liu, G.L.I.J.H.; Wang, G.D. Solitary waves of the fractal regularized long-wave equation traveling along an unsmooth boundary. Fractals 2022, 30, 2250008. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D.; Zhu, H.W. A new perspective on the study of the fractal coupled Boussinesq-Burger equation in shallow water. Fractals 2021, 29, 2150122. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D.; Shi, F. Abundant exact traveling wave solutions to the local fractional (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Fractals 2022, 2250064. [Google Scholar] [CrossRef]
- Kimeu, J.M. Fractional Calculus: Definitions and Applications; Western Kentucky University: Bowling Green, KY, USA, 2009. [Google Scholar]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Volume I. Background and Theory, Nonlinear Physical Science; Higher Education Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Volume II. Applications, Nonlinear Physical Science; Higher Education Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Das, S.; Kumar, R.; Gupta, P.K.; Jafari, H. Approximate analytical solutions for fractional space- and time-partial differential equations using homotopy analysis method. Appl. Appl. Math. Int. J. (AAM) 2010, 5, 1641–1659. [Google Scholar]
- Wang, K.J. Periodic solution of the time-space fractional complex nonlinear Fokas-Lenells equation by an ancient Chinese algorithm. Optik 2021, 243, 167461. [Google Scholar] [CrossRef]
- Das, S. A note on fractional diffusion equations. Chaos Solitons Fractals 2009, 42, 2074–2079. [Google Scholar] [CrossRef]
- Yang, X.J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4, 1–225. [Google Scholar]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Tariq, H.; Eslami, M.; Mirzazadeh, M.; Zhou, Q. New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chin. J. Phys. 2018, 56, 2805–2816. [Google Scholar] [CrossRef]
- Zeliha, K. Some analytical solutions by mapping methods for non-linear conformable time-fractional Phi-4 equation. Therm. Sci. 2019, 23, 1815–1822. [Google Scholar]
- Khader, M.M.; Kumar, S. An accurate numerical method for solving the linear fractional Klein-Gordon equation. Math. Methods Appl. Sci. 2014, 37, 2972–2979. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Adel, W.; Tala-Tebue, E.; Yao, S.W.; Mustafa Inc. Bright and singular soliton solutions to the Atangana-Baleanu fractional system of equations for the ISALWs. J. King Saud Univ.-Sci. 2021, 33, 101420. [Google Scholar] [CrossRef]
- Alruwaili, A.D.; Seadawy, A.R.; Rizvi, S.T.R.; Beinane, S.A.O. Diverse multiple lump analytical solutions for ion sound and Langmuir waves. Mathematics 2022, 10, 200. [Google Scholar] [CrossRef]
- Alexeff, I.; Neidigh, V. Observations of ionic sound waves in plasmas: Their properties and applications. Phys. Rev. 1963, 129, 516–527. [Google Scholar] [CrossRef]
- Thejappa, G.; MacDowall, R.J. High frequency ion sound waves associated with Langmuir waves in type III radio burst source regions. Nonlinear Process. Geophys. 2004, 11, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.J.; Zhu, H.W.; Liu, X.L.; Wang, G.D. Constructions of new abundant traveling wave solutions for system of the ion sound and Langmuir waves by the variational direct metho. Results Phys. 2021, 26, 104375. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Study on the explicit solutions of the Benney–Luke equation via the variational direct method. Math. Methods Appl. Sci. 2021, 44, 14173–14183. [Google Scholar] [CrossRef]
- Wang, K.J. Abundant analytical solutions to the new coupled Konno-Oono equation arising in magnetic field. Results Phys. 2021, 31, 104931. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Variational theory and new abundant solutions to the (1+2)-dimensional chiral nonlinear Schrödinger equation in optics. Phys. Lett. A 2021, 412, 127588. [Google Scholar] [CrossRef]
- Wang, K.J.; Zou, B.R. On new abundant solutions of the complex nonlinear Fokas–Lenells equation in optical fiber. Math. Methods Appl. Sci. 2021, 44, 13881–13893. [Google Scholar] [CrossRef]
- He, J.H. Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbo machinery aerodynamics. Int. J. Turbo Jet Engines 1997, 14, 23–28. [Google Scholar] [CrossRef]
- He, J.H. Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 2004, 19, 847–851. [Google Scholar] [CrossRef]
- He, J.H. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 2006, 20, 1141–1199. [Google Scholar] [CrossRef] [Green Version]
- LaBelle, J.; Cairns, I.H.; Kletzing, C.A. Electric field statistics and modulation characteristics of bursty Langmuir waves observed in the cusp. J. Geophys. Res. Space Phys. 2010, 115, 317. [Google Scholar] [CrossRef] [Green Version]
- Ergun, R.E.; Malaspina, D.M.; Cairns, I.H.; Goldman, M.V.; Newman, D.L.; Robinson, P.A.; Eriksson, S.; Bougeret, J.L.; Briand, C.; Bale, S.D.; et al. Eigenmode structure in solar-wind Langmuir waves. Phys. Rev. Lett. 2008, 101, 051101. [Google Scholar] [CrossRef] [PubMed]
- Kudryashov, N.A. Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3507–3529. [Google Scholar] [CrossRef] [Green Version]
- Akbari-Moghanjoughi, M. Energy spectrum of oscillations in generalized Sagdeev potential. Phys. Plasmas 2017, 24, 072107. [Google Scholar] [CrossRef]
- Dodin, I.Y.; Geyko, V.I.; Fisch, N.J. Langmuir wave linear evolution in inhomogeneous nonstationary anisotropic plasma. Phys. Plasmas 2009, 16, 112101. [Google Scholar] [CrossRef] [Green Version]
- Zaslavsky, A.; Volokitin, A.S.; Krasnoselskikh, V.V.; Maksimovic, M.; Bale, S.D. Spatial localization of Langmuir waves generated from an electron beam propagating in an inhomogeneous plasma: Applications to the solar wind. J. Geophys. Res. Space Phys. 2010, 115, 1–11. [Google Scholar] [CrossRef]
- Thejappa, G.; MacDowall, R.J. STEREO Observations of Non-linear Plasma Processes in Solar Type III Radio Bursts. J. Phys. Conf. Ser. 2018, 1100, 012026. [Google Scholar] [CrossRef]
- Musher, S.L.; Rubenchik, A.M.; Zakharov, V.E. Weak Langmuir turbulence. Phys. Rep. 1995, 252, 178–274. [Google Scholar] [CrossRef]
- Andreev, P.A. Hydrodynamics of quantum corrections to the Coulomb interaction via the third rank tensor evolution equation: Application to Langmuir waves and spin-electron acoustic waves. J. Plasma Phys. 2021, 87, 905870511. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Hassan, S.Z.; Alomair, R.A.; Alsaleh, D.M. Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations. AIMS Math. 2021, 6, 6555–6568. [Google Scholar] [CrossRef]
- Hassan, S.Z.; Abdelrahman, M.A.E. Solitary wave solutions for some nonlinear time fractional partial differential equations. Pramana 2018, 91, 67. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baleanu, D.; Rathore, S. Analysis of a fractional model of the Ambartsumian equation. Eur. Phys. J. Plus 2018, 133, 259. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Sohaly, M.A.; Alharbi, Y.F. Fundamental stochastic solutions for the conformable fractional NLSE with spatiotemporal dispersion via exponential distribution. Phys. Scr. 2021, 96, 125223. [Google Scholar] [CrossRef]
- Tariq, H.; Akram, G. New approach for exact solutions of time fractional Cahn-Allen equation and time fractional Phi-4 equation. Phys. A Stat. Mech. Its Appl. 2017, 473, 352–362. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, M.A.E.; Hassan, S.Z.; Alomair, R.A.; Alsaleh, D.M. The New Wave Structures to the Fractional Ion Sound and Langmuir Waves Equation in Plasma Physics. Fractal Fract. 2022, 6, 227. https://doi.org/10.3390/fractalfract6050227
Abdelrahman MAE, Hassan SZ, Alomair RA, Alsaleh DM. The New Wave Structures to the Fractional Ion Sound and Langmuir Waves Equation in Plasma Physics. Fractal and Fractional. 2022; 6(5):227. https://doi.org/10.3390/fractalfract6050227
Chicago/Turabian StyleAbdelrahman, Mahmoud A. E., S. Z. Hassan, R. A. Alomair, and D. M. Alsaleh. 2022. "The New Wave Structures to the Fractional Ion Sound and Langmuir Waves Equation in Plasma Physics" Fractal and Fractional 6, no. 5: 227. https://doi.org/10.3390/fractalfract6050227
APA StyleAbdelrahman, M. A. E., Hassan, S. Z., Alomair, R. A., & Alsaleh, D. M. (2022). The New Wave Structures to the Fractional Ion Sound and Langmuir Waves Equation in Plasma Physics. Fractal and Fractional, 6(5), 227. https://doi.org/10.3390/fractalfract6050227