Evolution Equations in Hilbert Spaces via the Lacunae Method
Abstract
:1. Introduction
1.1. Motivation for the Current Study
1.2. Novelty for the Current Study
2. Preliminaries
2.1. Basic Notations
2.2. Way of Approach
2.3. Basic Results, Theorems from the Referred Articles
3. Main Results
3.1. Evolution Equations with the Quasi-Polynomial Right-Hand Side
3.2. Kipriyanov Operator
3.3. Riesz Potential
3.4. Difference Operator
3.5. Artificially Constructed Normal Operator
3.6. Evolution Equations with the Fractional Derivative at the Left-Hand Side
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kukushkin, M.V. Natural lacunae method and Schatten-von Neumann classes of the convergence exponent. arXiv 2021, arXiv:2112.10396v1. [Google Scholar]
- Lidskii, V.B. Summability of series in terms of the principal vectors of non-selfadjoint operators. Tr. Mosk. Mat. Obs. 1962, 11, 3–35. [Google Scholar]
- Haq, A.; Sukavanam, N. Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping. Chaos Solitons Fractals 2020, 139, 110043. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Approximate controllability of semilinear fractional control systems of order α ∈ (1,2]. J. Dyn. Control Syst. 2017, 23, 679–691. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.; Pandey, D.N. Approximate controllability of semilinear fractional stochastic control system. Asian-Eur. J. Math. 2018, 11, 1850088. [Google Scholar] [CrossRef]
- Haq, A. Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives. Chaos Solitons Fractals 2022, 157, 111923. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, A.; Vijayakumar, V.; Udhayakumar, R. Asymptotic stability of fractional order (1, 2] stochastic delay differential equations in Banach spaces. Chaos Solitons Fractals 2021, 150, 111095. [Google Scholar] [CrossRef]
- Shkalikov, A.A. Perturbations of selfadjoint and normal operators with a discrete spectrum. Russ. Math. Surv. 2016, 71, 113–174. [Google Scholar] [CrossRef]
- Kukushkin, M.V. On one Method of Studying Spectral Properties of Non-selfadjoint Operators. Abstr. Appl. Anal. Hindawi Lond. UK 2020, 2020, 1461647. [Google Scholar] [CrossRef]
- Katsnelson, V.E. Conditions under which systems of eigenvectors of some classes of operators form a basis. Funct. Anal. Appl. 1967, 1, 122–132. [Google Scholar] [CrossRef]
- Krein, M.G. Criteria for completeness of the system of root vectors of a dissipative operator. Am. Math. Soc. Transl. Ser. Am. Math. Soc. Provid. RI 1963, 26, 221–229. [Google Scholar]
- Markus, A.S.; Matsaev, V.I. Operators generated by sesquilinear forms and their spectral asymptotics. Linear Oper. Integral Equ. Mat. Issled. Stiintsa Kishinev 1981, 61, 86–103. [Google Scholar]
- Markus, A.S. Expansion in root vectors of a slightly perturbed selfadjoint operator. Sov. Math. Dokl. 1962, 3, 104–108. [Google Scholar]
- Kukushkin, M.V. Asymptotics of eigenvalues for differential operators of fractional order. Fract. Calc. Appl. Anal. 2019, 22, 658–681. [Google Scholar] [CrossRef] [Green Version]
- Agranovich, M.S. On series with respect to root vectors of operators associated with forms having symmetric principal part. Funct. Anal. Its Appl. 1994, 28, 151–167. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Abstract fractional calculus for m-accretive operators. Int. J. Appl. Math. 2021, 34, 1–41. [Google Scholar] [CrossRef]
- Nakhushev, A.M. The Sturm-Liouville problem for an ordinary differential equation of the second order with fractional derivatives in lower terms. Proc. Acad. Sciences. USSR 1977, 234, 308–311. [Google Scholar]
- Aleroev, T.S. On eigenvalues of one class of non-selfadjoint operators. Differ. Equ. 1994, 30, 169–171. [Google Scholar]
- Rozenblyum, G.V.; Solomyak, M.Z.; Shubin, M.A. Spectral theory of differential operators. Results Sci. Technol. Ser. Mod. Probl. Math. Dir. 1989, 64, 5–242. [Google Scholar]
- Bazhlekova, E. The abstract Cauchy problem for the fractional evolution equation. Fract. Calc. Appl. Anal. 1998, 1, 255–270. [Google Scholar]
- Clément, P.; Gripenberg, G.; Londen, S.-O. Hölder regularity for a linear fractional evolution equation. In Topics in Nonlinear Analysis: The Herbert Amann Anniversary Volume; Birkhäuser: Basel, Switzerland, 1998; pp. 69–82. [Google Scholar]
- Moroz, L.; Maslovskaya, A.G. Hybrid stochastic fractal-based approach to modeling the switching kinetics of ferroelectrics in the injection mode. Math. Model. Comput. Simulations 2020, 12, 348–356. [Google Scholar] [CrossRef]
- Mainardi, F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1966, 9, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Mamchuev, M.O. Boundary value problem for the time-fractional telegraph equation with Caputo derivatives Mathematical Modelling of Natural Phenomena. Spec. Funct. Anal. PDEs 2017, 12, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Mamchuev, M.O. Solutions of the main boundary value problems for the time-fractional telegraph equation by the Green function method. Fract. Calc. Appl. Anal. 2017, 20, 190–211. [Google Scholar] [CrossRef] [Green Version]
- Pskhu, A.V. The fundamental solution of a diffusion-wave equation of fractional order. Izv. Math. 2009, 73, 351–392. [Google Scholar] [CrossRef]
- Wyss, W. The fractional diffusion equation. J. Math. Phys. 1986, 27, 2782–2785. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980. [Google Scholar]
- Gohberg, I.C.; Krein, M.G. Introduction to the Theory of Linear Non-Selfadjoint Operators in a Hilbert Space; Nauka, Fizmatlit: Moscow, Russia, 1965. [Google Scholar]
- Kipriyanov, I.A. On spaces of fractionally differentiable functions. Proc. Acad. Sci. USSR 1960, 24, 665–882. [Google Scholar]
- Kipriyanov, I.A. The operator of fractional differentiation and powers of the elliptic operators. Proc. Acad. Sci. USSR 1960, 131, 238–241. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science: Philadelphia, PA, USA, 1993. [Google Scholar]
- Krasnoselskii, M.A.; Zabreiko, P.P.; Pustylnik, E.I.; Sobolevskii, P.E. Integral Operators in the Spaces of Summable Functions; Science, FIZMATLIT: Moscow, Russia, 1966. [Google Scholar]
- Kukushkin, M.V. Spectral properties of fractional differentiation operators. Electron. J. Differ. Equ. 2018, 2018, 1–24. [Google Scholar]
- Dimovski, I.H.; Kiryakova, V.S. Transmutations, convolutions and fractional powers of Bessel-type operators via Maijer’s G-function. In Proceedings of the Complex Analysis and Applications, Varna, Bulgaria, 13 September 1983; Publishing House Bulgarian Academy of Sciences: Sofia, Bulgaria, 1986; pp. 45–66. [Google Scholar]
- Erdelyi, A. Fractional integrals of generalized functions. J. Austral. Math. Soc. 1972, 14, 30–37. [Google Scholar] [CrossRef] [Green Version]
- McBride, A. A note of the index laws of fractional calculus. J. Austral. Math. Soc. A 1983, 34, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Nakhushev, A.M. Fractional Calculus and Its Application; Fizmatlit: Moscow, Russia, 2003. [Google Scholar]
- Adams, R.A. Compact lmbeddings of Weighted Sobolev Spaces on Unbounded Domains. J. Differ. Equ. 1971, 9, 325–334. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukushkin, M.V. Evolution Equations in Hilbert Spaces via the Lacunae Method. Fractal Fract. 2022, 6, 229. https://doi.org/10.3390/fractalfract6050229
Kukushkin MV. Evolution Equations in Hilbert Spaces via the Lacunae Method. Fractal and Fractional. 2022; 6(5):229. https://doi.org/10.3390/fractalfract6050229
Chicago/Turabian StyleKukushkin, Maksim V. 2022. "Evolution Equations in Hilbert Spaces via the Lacunae Method" Fractal and Fractional 6, no. 5: 229. https://doi.org/10.3390/fractalfract6050229
APA StyleKukushkin, M. V. (2022). Evolution Equations in Hilbert Spaces via the Lacunae Method. Fractal and Fractional, 6(5), 229. https://doi.org/10.3390/fractalfract6050229