(p(x),q(x))-Kirchhoff-Type Problems Involving Logarithmic Nonlinearity with Variable Exponent and Convection Term
Abstract
:1. Introduction
- :
- There are some constants for all such that
- :
- The conditions that we impose on are as follows:
- :
- There exist some constants and a function such that
- :
- There exists a positive function and some positive constants a and b such that
2. Preliminary Results and Some Technical Lemmas
3. Finite Dimensional Approximate Solutions
- if and , problem (1) admits a approximate solution for all and
- if , and , the problem (1) admits a approximate solution for all and
- if and , problem (1) admits a approximate solution for all and
- if and , problem (1) admits a approximate solution for all and
- if , and , problem (1) admits a approximate solution for all and
- if and , problem (1) admits a approximate solution for all and
4. Existence of Weak Solutions
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirchhoff, G. Vorlesungen über Mathematische Physik; Band 1; Mechanik, B.G. Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Ledesma, C. Multiplicity result for non-homogeneous fractional Schrödinger–Kirchhoff-type equations in RN. Adv. Nonlinear Anal. 2018, 7, 247–257. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Chung, N. Existence of solutions to nonlocal Kirchhoff equations of elliptic type via genus theory. Electron. J. Differ. Equ. 2014, 86, 1–12. [Google Scholar]
- Lee, J.; Kim, J.M.; Kim, Y.H. Existence and multiplicity of solutions for Kirchhoff–Schrödinger type equations involving p(x)-Laplacian on the entire space RN. Nonlinear Anal. Real World Appl. 2019, 45, 620–649. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, Q. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonliear Anal. 2003, 52, 1843–1852. [Google Scholar] [CrossRef]
- Kaufmann, U.; Rossi, J.; Vidal, R. Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians. Electron. J. Qual. Theory Differ. Equ. 2017, 76, 1–10. [Google Scholar] [CrossRef]
- Biswas, R.; Tiwari, S. On a class of Kirchhoff–Choquard equations involving variable-order fractional p(·)-Laplacian and without Ambrosetti-Rabinowitz type condition. arXiv 2020, arXiv:2005.09221. [Google Scholar]
- Bahrouni, S.; Ounaies, H. Strauss and Lions type theorems for the fractional sobolev spaces with variable exponent and applications to nonlocal Kirchhoff–Choquard problem. Mediterr. J. Math. 2021, 18, 1–22. [Google Scholar] [CrossRef]
- Zuo, J.; Yang, L.; Liang, S. A variable-order fractional p(·)-Kirchhoff type problem in RN. Math. Methods Appl. Sci. 2021, 44, 3872–3889. [Google Scholar] [CrossRef]
- Zhang, J. Existence results for a kirchhoff-type equations involving the fractional p1(x)&p2(x)-Laplace operator. Collect. Math. 2022, 73, 271–293. [Google Scholar]
- Azroul, E.; Benkirane, A.; Shimi, M. Existence and multiplicity of solutions for fractional p(x,·)-Kirchhoff-type problems in RN. Appl. Anal. 2021, 100, 2029–2048. [Google Scholar] [CrossRef]
- Bahrouni, A.; Rǎdulescu, V. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discret. Contin. Dyn. Syst. Ser. S 2018, 11, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Bisci, G.M.; Vilasi, L. On a fractional degenerate Kirchhoff-type problem. Commun. Contemp. Math. 2017, 19, 1550088. [Google Scholar] [CrossRef]
- Liu, D.C. On a p-Kirchhoff equation via fountain theorem and dual fountain theorem. Nonlinear Anal. 2010, 72, 302–308. [Google Scholar] [CrossRef]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Cherfils, L.; Il’yasov, V. On the stationary solutions of generalized reaction difusion equations with p&q-Laplacian. Commun. Pur. Appl. Anal. 2004, 4, 9–22. [Google Scholar]
- Figueiredo, G. Existence of positive solutions for a class of p&q elliptic problems with critical growth in RN. J. Math. Anal. Appl. 2011, 378, 507–518. [Google Scholar]
- Li, G.; Liang, X. The existence of nontrivial solutions to nonlinear elliptic equation of p&q-Laplacian type on RN. Nonlinear Anal. 2009, 71, 2316–2334. [Google Scholar]
- Zuo, J.; Fiscella, A.; Bahrouni, A. Existence and multiplicity results for p(·)&q(·) fractional Choquard problems with variable order. Complex Var. Elliptic Equ. 2022, 67, 500–516. [Google Scholar]
- Chung, N.; Toan, H. On a class of fractional Laplacian problems with variable exponents and indefinite weights. Collect. Math. 2020, 71, 223–237. [Google Scholar] [CrossRef]
- Motreanu, D. Quasilinear Dirichlet problems with competing operators and convection. Open Math. 2020, 18, 1510–1517. [Google Scholar] [CrossRef]
- Benboubker, M.; Azroul, E.; Barbara, A. Quasilinear elliptic problems with nonstandard growth. Electron. J. Differ. Equ. 2011, 62, 1–16. [Google Scholar]
- Fan, X.; Zhao, D. A class of De Giorgi type and Hölder continuity. Nonlinear Anal. 1999, 36, 295–318. [Google Scholar] [CrossRef]
- Ho, K.; Sim, I. A-priori bounds and existence for solutions of weighted elliptic equations with a convection term. Adv. Nonlinear Anal. 2017, 6, 427–445. [Google Scholar] [CrossRef]
- Ourraoui, A. On an elliptic equation of p-Kirchhoff type with convection term. C. R. Math. 2016, 354, 253–256. [Google Scholar] [CrossRef]
- Vetro, C. Variable exponent p(x)-Kirchhoff type problem with convection. J. Nonlinear Math. Phys. 2022, 506, 125721. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Zhang, J. Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity. AIMS Math. 2020, 5, 2100–2112. [Google Scholar] [CrossRef]
- Dai, P.; Mu, C.; Xu, G. Blow-up phenomena for a pseudo-parabolic equation with p-Laplacian and logarithmic nonlinearity terms. J. Math. Anal. Appl. 2019, 481, 123439. [Google Scholar] [CrossRef]
- Ardila, A.; Alex, H. Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Anal. Theor. Methods Appl. 2017, 4, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Truong, L. The nehari manifold for fractional p-Laplacian equation with logarithmic nonlinearity on whole space. Comput. Math. Appl. 2019, 78, 3931–3940. [Google Scholar] [CrossRef]
- Xiang, M.; Hu, D.; Yang, D. Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity. Nonlinear Anal. 2020, 198, 111899. [Google Scholar] [CrossRef]
- Boudjeriou, T. On the diffusion p(x)-Laplacian with logarithmic nonlinearity. J. Elliptic Parabol.Equ. 2020, 6, 773–794. [Google Scholar] [CrossRef]
- Zeng, F.; Deng, Q.; Wang, D. Global Existence and Blow-Up for the Pseudo-parabolic p(x)-Laplacian Equation with Logarithmic Nonlinearity. J. Nonlinear Math. Phys. 2022, 29, 41–57. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, D. On the spaces Lp(x)(Ω) and Wk,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef] [Green Version]
- Kováčik, O.; Rxaxkosník, J. On spaces Lp(x) and W1,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics 2017; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Showalter, E. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 1997; Volume 49. [Google Scholar]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators; Springer: New York, NY, USA, 1990. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, W.; An, T.; Qian, D.; Li, Y. (p(x),q(x))-Kirchhoff-Type Problems Involving Logarithmic Nonlinearity with Variable Exponent and Convection Term. Fractal Fract. 2022, 6, 255. https://doi.org/10.3390/fractalfract6050255
Bu W, An T, Qian D, Li Y. (p(x),q(x))-Kirchhoff-Type Problems Involving Logarithmic Nonlinearity with Variable Exponent and Convection Term. Fractal and Fractional. 2022; 6(5):255. https://doi.org/10.3390/fractalfract6050255
Chicago/Turabian StyleBu, Weichun, Tianqing An, Deliang Qian, and Yingjie Li. 2022. "(p(x),q(x))-Kirchhoff-Type Problems Involving Logarithmic Nonlinearity with Variable Exponent and Convection Term" Fractal and Fractional 6, no. 5: 255. https://doi.org/10.3390/fractalfract6050255
APA StyleBu, W., An, T., Qian, D., & Li, Y. (2022). (p(x),q(x))-Kirchhoff-Type Problems Involving Logarithmic Nonlinearity with Variable Exponent and Convection Term. Fractal and Fractional, 6(5), 255. https://doi.org/10.3390/fractalfract6050255