New Results Involving Riemann Zeta Function Using Its Distributional Representation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Fractional Integrals and Derivatives Formulae Involving the Riemann Zeta-Function
3.2. Formulation of Fractional Kinetic Equation Involving Riemann Zeta-Function
3.3. Further New Properties of the Riemann Zeta function as a Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lapidus, M.L.; van Frankenhuijsen, M. Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Titchmarsh, E.C. The Theory of the Riemann Zeta Function; Oxford University Press: Oxford, UK, 1951. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher Transcendental Functions; McGraw-Hill Book Corp.: New York, NY, USA, 1953; Volume 1–2. [Google Scholar]
- Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications; Chapman and Hall (CRC Press Company): Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2001. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some general families of the Hurwitz-Lerch Zeta functions and their applications: Recent developments and directions for further researches. Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan 2019, 45, 234–269. [Google Scholar] [CrossRef]
- Srivastava, H.M. The Zeta and related functions: Recent developments. J. Adv. Engrg. Comput. 2019, 3, 329–354. [Google Scholar] [CrossRef] [Green Version]
- Tassaddiq, A. A New Representation for Srivastava’s λ-Generalized Hurwitz-Lerch Zeta Functions. Symmetry 2018, 10, 733. [Google Scholar] [CrossRef] [Green Version]
- Tassaddiq, A. A New Representation of the generalized Krätzel function. Mathematics 2020, 8, 2009. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A. Fourier transform and distributional representation of Gamma function leading to some new identities. Int. J. Math. Math. Sci. 2004, 37, 2091–2096. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Qadir, A. Fourier transform and distributional representation of the generalized gamma function with some applications. Appl. Math. Comput. 2011, 218, 1084–1088. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Qadir, A. Fourier transform representation of the extended Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions. Integral Transform. Spec. Funct. 2018, 22, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Tassaddiq, A. Some Representations of the Extended Fermi-Dirac and Bose-Einstein Functions with Applications. Ph.D. Dissertation, National University of Sciences and Technology Islamabad, Islamabad, Pakistan, 2011. [Google Scholar]
- Al-Lail, M.H.; Qadir, A. Fourier transform representation of the generalized hypergeometric functions with applications to the confluent and gauss hypergeometric functions. Appl. Math. Comput. 2015, 263, 392–397. [Google Scholar] [CrossRef]
- Tassaddiq, A. A New Representation of the Extended Fermi-Dirac and Bose-Einstein Functions. Int. J. Math. Appl. 2017, 5, 435–446. [Google Scholar]
- Tassaddiq, A.; Safdar, R.; Kanwal, T. A distributional representation of gamma function with generalized complex domain. Adv. Pure Math. 2017, 7, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Tassaddiq, A. A new representation of the k-gamma functions. Mathematics 2019, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Tassaddiq, A. An application of theory of distributions to the family of λ-generalized gamma function. AIMS Math. 2020, 5, 5839–5858. [Google Scholar] [CrossRef]
- Tassaddiq, A. A new representation of the extended k-gamma function with applications. Math. Meth. Appl. Sci. 2021, 44, 11174–11195. [Google Scholar] [CrossRef]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: New York, NY, USA, 1969; Volume 1. [Google Scholar]
- Zamanian, A.H. Distribution Theory and Transform Analysis; Dover Publications: New York, NY, USA, 1987. [Google Scholar]
- Kiryakova, V. Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics 2020, 8, 2260. [Google Scholar] [CrossRef]
- Kiryakova, V. A Guide to Special Functions in Fractional Calculus. Mathematics 2021, 9, 106. [Google Scholar] [CrossRef]
- Agarwal, R.; Jain, S.; Agarwal, R.P.; Baleanu, D. A remark on the fractional integral operators and the image formulas of generalized Lommel-Wright function. Front. Phys. 2018, 6, 79. [Google Scholar] [CrossRef]
- Kiryakova, V. Commentary: A remark on the fractional integral operators and the image formulas of generalized Lommel-Wright function. Front. Phys. 2019, 7, 145. [Google Scholar] [CrossRef]
- Agarwal, R.; Jain, S.; Agarwal, R.P.; Baleanu, D. Response: Commentary: A remark on the fractional integral operators and the image formulas of generalized Lommel-Wright function. Front. Phys. 2020, 8, 72. [Google Scholar] [CrossRef]
- Kilbas, A.A. H-Transforms: Theory and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Mittag-Leffler, M.G. Sur la nouvelle fonction E(x). Comptes Rendus Acad. Sci. 1903, 137, 554–558. [Google Scholar]
- Marichev, O.I. Volterra equation of Mellin convolutional type with a Horn function in the kernel. Izv. AN BSSR Ser. Fiz. Mat. Nauk 1974, 1, 128–129. (In Russian) [Google Scholar]
- Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transformation Methods & Special Functions, Varna ‘96: Second International Workshop: Proceedings; Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Science Culture Technology Publishing: Singapore, 1998; pp. 386–400. [Google Scholar]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Ed. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series (Ellis Horwood Series in Mathematics and Its Applications); Halsted Press: Chichester, UK, 1985. [Google Scholar]
- Abboubakar, H.; Kom Regonne, R.; Sooppy Nisar, K. Fractional Dynamics of Typhoid Fever Transmission Models with Mass Vaccination Perspectives. Fractal Fract. 2021, 5, 149. [Google Scholar] [CrossRef]
- Yasmin, H. Numerical Analysis of Time-Fractional Whitham-Broer-Kaup Equations with Exponential-Decay Kernel. Fractal Fract. 2022, 6, 142. [Google Scholar] [CrossRef]
- Delgado, B.B.; Macías-Díaz, J.E. On the General Solutions of Some Non-Homogeneous Div-Curl Systems with Riemann–Liouville and Caputo Fractional Derivatives. Fractal Fract. 2021, 5, 117. [Google Scholar] [CrossRef]
- Feng, Z.; Ye, L.; Zhang, Y. On the Fractional Derivative of Dirac Delta Function and Its Application. Adv. Math. Phys. 2020, 2020, 1842945. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Abdo, M.S.; Shah, K.; Abdalla, B.; Abdeljawad, T. Extremal Solutions of Generalized Caputo-Type Fractional-Order Boundary Value Problems Using Monotone Iterative Method. Fractal Fract. 2022, 6, 146. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Haubold, H.J.; Mathai, A.M. The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 2000, 273, 53–63. [Google Scholar] [CrossRef]
- Saxena, R.K.; Mathai, A.M.; Haubold, H.J. On fractional kinetic equations. Astrophys. Space Sci. 2002, 282, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.K.; Mathai, A.M.; Haubold, H.J. On generalized fractional kinetic equations. Phys. A 2004, 344, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.K.; Mathai, A.M.; Haubold, H.J. Unified fractional kinetic equations and a fractional diffusion equation. Astrophys. Space Sci. 2004, 290, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.K.; Kalla, S.L. On the solutions of certain fractional kinetic equations. Appl. Math. Comput. 2008, 199, 504–511. [Google Scholar] [CrossRef]
- Chaurasia, V.B.L.; Pandey, S.C. On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions. Astrophys. Space Sci. 2008, 317, 213–219. [Google Scholar] [CrossRef]
- Chaurasia, V.B.L.; Kumar, D. On the solutions of generalized fractional kinetic equations. Adv. Stud. Theor. Phys. 2010, 4, 773–780. [Google Scholar]
- Chaurasia, V.B.L.; Singh, Y. A novel computable extension of fractional kinetic equations arising in astrophysics. Int. J. Adv. Appl. Math. Mech. 2015, 3, 1–9. [Google Scholar]
- Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
m = 3 | Marichev–Saigo–Maeda fractional integrals and derivatives [31,32,33,34] |
m = 2 | Saigo fractional integrals and derivatives [31,32,33,34] |
m = 1 | Erdélyi–Kober, Riemann–Liouville (R–L) fractional integrals and derivatives [31,32,33,34] |
Function | Zeta Transform |
---|---|
[McDonald function [4]] | |
addition with an arbitrary distribution | |
multiplication with an arbitrary constant | |
shifting by an arbitrary complex constant | |
transposition | |
multiplication of the independent variable with a positive constant | |
distributional differentiation | |
distributional Fourier transform | |
duality property of Fourier transform | |
Parseval’s identity of Fourier transform | |
differentiation property of Fourier transform | |
Taylor series | |
Convolution property | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A.; Srivastava, R. New Results Involving Riemann Zeta Function Using Its Distributional Representation. Fractal Fract. 2022, 6, 254. https://doi.org/10.3390/fractalfract6050254
Tassaddiq A, Srivastava R. New Results Involving Riemann Zeta Function Using Its Distributional Representation. Fractal and Fractional. 2022; 6(5):254. https://doi.org/10.3390/fractalfract6050254
Chicago/Turabian StyleTassaddiq, Asifa, and Rekha Srivastava. 2022. "New Results Involving Riemann Zeta Function Using Its Distributional Representation" Fractal and Fractional 6, no. 5: 254. https://doi.org/10.3390/fractalfract6050254
APA StyleTassaddiq, A., & Srivastava, R. (2022). New Results Involving Riemann Zeta Function Using Its Distributional Representation. Fractal and Fractional, 6(5), 254. https://doi.org/10.3390/fractalfract6050254