Hermite–Hadamard Type Inequalities Involving (k-p) Fractional Operator for Various Types of Convex Functions
Abstract
:1. Introduction and Preliminaries
- 1.
- If , then we get an h-convex function.
- 2.
- If , then we get an m-convex function.
- 3.
- If and m = 1, then we get a convex function.
- 4.
- If and m = 1, then we get a p-function.
- 5.
- If and m = 1, then we get an s-convex function in the second sense.
- 6.
- If and , then we get a Godunova–Levin function.
- 7.
- If and , then we get an s-Godunova–Levin function of the second kind.
Special Cases
- 1.
- When the (k-p) Riemann–Liouville fractional integral reduces to a k-Riemann–Liouville fractional integral.
- 2.
- When the (k-p) Riemann–Liouville fractional integral reduces to a Katugampola fractional integral.
- 3.
- When the (k-p) Riemann–Liouville fractional integral reduces to a Riemann–Liouville fractional integral.
2. Main Results
- 1.
- 2.
3. Conclusions and Outlook
- 1.
- In this paper, various new fractional inequalities have been obtained. The paper utilized the and convexity to produce results involving fractional operators. Various inequalities in corollaries have been obtained as a consequence of the generalized convexity of and types.
- 2.
- Questions arise whether further generalizations of the obtained convex fractional inequalities are obtainable.
- 3.
- As a possible open problem, considering there are various types of convexity definitions, it is natural to ask whether other types of convexity could be used to produce a fractional integral inequality using the k-p fractional operator. Perhaps research into using -convexity with Raina’s function withthe k-p fractional operator could produce results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitrinović, D.S. Analytic Inequalities; Springer: Berlin, Germany, 1970. [Google Scholar]
- Pečarić, J.; Proschan, F.; Tong, Y. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press, Inc.: Cambridge, MA, USA, 1992. [Google Scholar]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejr type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Chu, Y.M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite-Hadamard-type inequalities involving-Riemann-Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef] [Green Version]
- Aljaaidi, T.A.; Pachpatte, D.B. The Minkowski’s inequalities via f-Riemann-Liouville fractional integral operators. Rend. Del Circolo Mat. Palermo Ser. 2 2021, 70, 893–906. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Jarad, F.; Chu, Y.M. Existence and uniqueness of uncertain fractional backward difference equations of Riemann-Liouville type. Math. Probl. Eng. 2020, 2020, 6598682. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considéréé par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Farissi, A.; Latreuch, Z. New type of Chebychev-Grss inequalities for convex functions. Acta Univ. Apulensis 2013, 34, 235–245. [Google Scholar]
- Guran, L.; Mitrović, Z.D.; Reddy, G.S.M.; Belhenniche, A.; Radenović, S. Applications of a Fixed Point Result for Solving Nonlinear Fractional and Integral Differential Equations. Fractal Fract. 2021, 5, 211. [Google Scholar] [CrossRef]
- Rashid, S.; Hammouch, Z.; Kalsoom, H.; Ashraf, R.M.; Chu, Y. New investigation on the generalized k- fractional integral operators. Front. Phys. 2020, 8, 25. [Google Scholar] [CrossRef]
- Butt, S.I.; Tariq, M.; Aslam, A.; Ahmad, H.; Nofal, T.A. Hermite–hadamard type inequalities via generalized harmonic exponential convexity and applications. J. Funct. Spaces 2021, 2021, 5533491. [Google Scholar] [CrossRef]
- Simić, S.; Todorčević, V. Jensen Functional, Quasi-Arithmetic Mean and Sharp Converses of Hölder’s Inequalities. Mathematics 2021, 9, 3104. [Google Scholar] [CrossRef]
- Chandola, A.; Agarwal, R.; Pandey, M.R. Some New Hermite-Hadamard, Hermite-Hadamard Fejer and Weighted Hardy Type Inequalities Involving (k-p) Riemann-Liouville Fractional Integral Operator. Appl. Math. Inf. Sci. 2022, 16, 287–297. [Google Scholar]
- Hermann, R. Fractional Calculus an Introduction for Physicists; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2011; p. 596224. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus Theory and Applications of Differentation and Integration to Arbitrary Order; Academic Press, Inc.: London, UK, 1974. [Google Scholar]
- Yang, X.J. General Fractional Derivatives Theory, Methods and Applications; Taylor and Francis Group: London, UK, 2019. [Google Scholar]
- Park, J. Generalization of Ostrowski-type inequalities for differentiable real (s, m)-convex mappings. Far East J. Math. Sci. 2011, 49, 157–171. [Google Scholar]
- Fang, Z.; Shi, R. On the (p,h)-convex function and some integral inequalities. J. Inequalities Appl. 2014, 2014, 45. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, M.E.; Akdemri, A.O.; Set, E. On (h-m)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 2016, 8, 51–58. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Dover Publications: New York, NY, USA, 1992; p. MR1225604. [Google Scholar]
- Mubeen, S.; Habibullah, G. k-Fractional Integrals and Application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Katugampola, U. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Sarikaya, M.; Dahmani, Z.; Kiris, M.; Ahmed, F. (k,s)- Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De la Sen, M. Hermite-Hadamard Type Inequalities Involving k-Fractional Operator for (h,m)-Convex Functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojiljković, V.; Ramaswamy, R.; Alshammari, F.; Ashour, O.A.; Alghazwani, M.L.H.; Radenović, S. Hermite–Hadamard Type Inequalities Involving (k-p) Fractional Operator for Various Types of Convex Functions. Fractal Fract. 2022, 6, 376. https://doi.org/10.3390/fractalfract6070376
Stojiljković V, Ramaswamy R, Alshammari F, Ashour OA, Alghazwani MLH, Radenović S. Hermite–Hadamard Type Inequalities Involving (k-p) Fractional Operator for Various Types of Convex Functions. Fractal and Fractional. 2022; 6(7):376. https://doi.org/10.3390/fractalfract6070376
Chicago/Turabian StyleStojiljković, Vuk, Rajagopalan Ramaswamy, Fahad Alshammari, Ola A. Ashour, Mohammed Lahy Hassan Alghazwani, and Stojan Radenović. 2022. "Hermite–Hadamard Type Inequalities Involving (k-p) Fractional Operator for Various Types of Convex Functions" Fractal and Fractional 6, no. 7: 376. https://doi.org/10.3390/fractalfract6070376
APA StyleStojiljković, V., Ramaswamy, R., Alshammari, F., Ashour, O. A., Alghazwani, M. L. H., & Radenović, S. (2022). Hermite–Hadamard Type Inequalities Involving (k-p) Fractional Operator for Various Types of Convex Functions. Fractal and Fractional, 6(7), 376. https://doi.org/10.3390/fractalfract6070376