Forecasting the Volatility of the Stock Index with Deep Learning Using Asymmetric Hurst Exponents
Abstract
:1. Introduction
2. Methods
2.1. Asymmetric Fractality of Stock Price Index
2.2. Recurrent Neural Network Group
3. Experiments and Data
3.1. Experiments
3.2. Data
4. Results
4.1. Forecasting Performance by Model
4.2. Forecasting Performance by Period
4.3. Constructing a New Two-Stage Forecasting Model Using Asymmetric Hurst Exponents
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Appl. Soft Comput. 2020, 90, 106181. [Google Scholar] [CrossRef] [Green Version]
- Pai, P.F.; Lin, C.S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2005, 33, 497–505. [Google Scholar] [CrossRef]
- Hadavandi, E.; Shavandi, H.; Ghanbari, A. Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowl.-Based Syst. 2010, 23, 800–808. [Google Scholar] [CrossRef]
- Qiu, M.; Song, Y.; Akagi, F. Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock market. Chaos Solitons Fractals 2016, 85, 1–7. [Google Scholar] [CrossRef]
- Althelaya, K.A.; El-Alfy, E.S.M.; Mohammed, S. Stock Market Forecast Using Multivariate Analysis with Bidirectional and Stacked (LSTM, GRU). In Proceedings of the 2018 21st Saudi Computer Society National Computer Conference (NCC), Riyadh, Saudi Arabia, 25–26 April 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Sethia, A.; Raut, P. Application of LSTM, GRU and ICA for Stock Price Prediction. In Information and Communication Technology for Intelligent Systems; Satapathy, S.C., Joshi, A., Eds.; Springer: Singapore, 2019; pp. 479–487. [Google Scholar] [CrossRef]
- Connor, J.; Martin, R.; Atlas, L. Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 1994, 5, 240–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahmiri, S.; Bekiros, S. Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos Solitons Fractals 2019, 118, 35–40. [Google Scholar] [CrossRef]
- Liang, L.; Cai, X. Forecasting peer-to-peer platform default rate with LSTM neural network. Electron. Commer. Res. Appl. 2020, 43, 100997. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, S.; Li, X.; Wang, S. The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach. Energy Econ. 2021, 95, 105140. [Google Scholar] [CrossRef]
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020, 140, 110212. [Google Scholar] [CrossRef]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 324–328. [Google Scholar] [CrossRef]
- Gong, X.L.; Liu, X.H.; Xiong, X.; Zhuang, X.T. Forecasting stock volatility process using improved least square support vector machine approach. Soft Comput. 2019, 23, 11867–11881. [Google Scholar] [CrossRef]
- Wang, Z.; Bouri, E.; Ferreira, P.; Shahzad, S.J.H.; Ferrer, R. A grey-based correlation with multi-scale analysis: S&P 500 VIX and individual VIXs of large US company stocks. Financ. Res. Lett. 2022, 48, 102872. [Google Scholar] [CrossRef]
- Sardelich, M.; Manandhar, S. Multimodal deep learning for short-term stock volatility prediction. arXiv 2018, arXiv:1812.10479. [Google Scholar] [CrossRef]
- Kim, H.Y.; Won, C.H. Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Syst. Appl. 2018, 103, 25–37. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z. Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism. arXiv 2019, arXiv:1912.11059. [Google Scholar] [CrossRef]
- Liu, Y. Novel volatility forecasting using deep learning–Long Short Term Memory Recurrent Neural Networks. Expert Syst. Appl. 2019, 132, 99–109. [Google Scholar] [CrossRef]
- Hu, Y.; Ni, J.; Wen, L. A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction. Phys. A Stat. Mech. Its Appl. 2020, 557, 124907. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, J.; Zhang, L.; Liu, C. An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Phys. A Stat. Mech. Its Appl. 2020, 541, 122272. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhang, T. Forecasting stock market in high and low volatility periods: A modified multifractal volatility approach. Chaos Solitons Fractals 2020, 140, 110252. [Google Scholar] [CrossRef]
- Li, Y.; Vilela, A.L.; Stanley, H.E. The institutional characteristics of multifractal spectrum of China’s stock market. Phys. A Stat. Mech. Its Appl. 2020, 550, 124129. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L. Long-range correlation and predictability of Chinese stock prices. Phys. A Stat. Mech. Its Appl. 2020, 549, 124384. [Google Scholar] [CrossRef]
- Choi, S.Y. Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic. Phys. A Stat. Mech. Its Appl. 2021, 574, 125988. [Google Scholar] [CrossRef]
- Aslam, F.; Ferreira, P.; Mohti, W. Investigating efficiency of frontier stock markets using multifractal detrended fluctuation analysis. Int. J. Emerg. Mark. 2021. [Google Scholar] [CrossRef]
- Shahzad, S.J.H.; Bouri, E.; Kayani, G.M.; Nasir, R.M.; Kristoufek, L. Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour. Phys. A Stat. Mech. Its Appl. 2020, 550, 124519. [Google Scholar] [CrossRef]
- Bianchi, S.; Di Sciorio, F.; Mattera, R. Forecasting VIX with Hurst Exponent. In Mathematical and Statistical Methods for Actuarial Sciences and Finance; Corazza, M., Perna, C., Pizzi, C., Sibillo, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 90–95. [Google Scholar] [CrossRef]
- Garcin, M. Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates. Phys. A Stat. Mech. Its Appl. 2017, 483, 462–479. [Google Scholar] [CrossRef]
- Lin, Y.; Han, D.; Du, J.; Jia, G. The Mechanism of Google Trends Affecting Crude Oil Price Forecasting. SN Comput. Sci. 2022, 3, 1–12. [Google Scholar] [CrossRef]
- Lee, M.; Song, J.W.; Park, J.H.; Chang, W. Asymmetric multi-fractality in the U.S. stock indices using index-based model of A-MFDFA. Chaos Solitons Fractals 2017, 97, 28–38. [Google Scholar] [CrossRef]
- Lee, M.; Song, J.W.; Kim, S.; Chang, W. Asymmetric market efficiency using the index-based asymmetric-MFDFA. Phys. A Stat. Mech. Its Appl. 2018, 512, 1278–1294. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, J.; Alvarez, J.; Rodríguez, E. Asymmetric long-term autocorrelations in crude oil markets. Phys. A Stat. Mech. Its Appl. 2015, 424, 330–341. [Google Scholar] [CrossRef]
- Kassouri, Y. Boom-bust cycles in oil consumption: The role of explosive bubbles and asymmetric adjustments. Energy Econ. 2022, 111, 106006. [Google Scholar] [CrossRef]
- Mensi, W.; Sensoy, A.; Vo, X.V.; Kang, S.H. Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices. Resour. Policy 2020, 69, 101829. [Google Scholar] [CrossRef] [PubMed]
- Arias-Calluari, K.; Najafi, M.N.; Harré, M.S.; Tang, Y.; Alonso-Marroquin, F. Testing stationarity of the detrended price return in stock markets. Phys. A Stat. Mech. Its Appl. 2022, 587, 126487. [Google Scholar] [CrossRef]
- Su, X. Dynamic behaviors and contributing factors of volatility spillovers across G7 stock markets. N. Am. J. Econ. Financ. 2020, 53, 101218. [Google Scholar] [CrossRef]
- Ghosh, B.; Bouri, E. Long memory and fractality in the universe of volatility indices. Complexity 2022, 2022, 6728432. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, W.; Wang, W.; Zhu, Y.; Deng, J. Attention-Based Relation Extraction With Bidirectional Gated Recurrent Unit and Highway Network in the Analysis of Geological Data. IEEE Access 2018, 6, 5705–5715. [Google Scholar] [CrossRef]
- Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-based bidirectional long short-term memory networks for relation classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Berlin, Germany, 7–12 August 2016; pp. 207–212. [Google Scholar]
- Lu, Q.; Zhu, Z.; Xu, F.; Zhang, D.; Wu, W.; Guo, Q. Bi-GRU Sentiment Classification for Chinese Based on Grammar Rules and BERT. Int. J. Comput. Intell. Syst. 2020, 13, 538–548. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [Google Scholar] [CrossRef]
Hyperparameters | Values |
---|---|
Neurons | [25, 50, 100, 200] |
Optimizer | Adam |
Learning rate | [0.1, 0.01, 0.001] |
Epochs | [25, 50, 100] |
Batch size | [50, 100, 200, 400, 800] |
Mean | Max | Min | Standard Deviation | Skewness | Kurtosis | Jarque–Bera Test | ADF Test 1 | |
---|---|---|---|---|---|---|---|---|
r | 0.0003 | 0.1158 | −0.1198 | 0.0125 | −0.17 | 11.43 | 27,402.2 * | −17.1 * |
0.0081 | 0.1198 | 0 | 0.0095 | 3.59 | 22.54 | 117,313.6 * | −6.6 * | |
his_vol | 0.0044 | 0.0261 | 0.0009 | 0.0030 | 3.14 | 14.21 | 50,586.1 * | −6.2 * |
0.4731 | 0.6022 | 0.3158 | 0.0478 | −0.25 | −0.41 | 87.8 * | −3.7 * | |
0.4398 | 0.7385 | −0.0542 | 0.1020 | −1.03 | 2.54 | 2234.6 * | −4.3 * | |
0.4964 | 0.8643 | 0.0399 | 0.0847 | −0.49 | 2.14 | 1163.7 * | −5.3 * |
RNNs | Mean Forecast Error (MFE) | ||||
only_r | abs_r | his_vol | and | ||
LSTM | 0.001991 | 0.000550 | −0.000496 | 0.000535 | 0.000222 |
BiLSTM | 0.001281 | −0.000175 | 0.000985 | 0.000367 | 0.000355 |
GRU | 0.001170 | 0.000063 | 0.000527 | −0.000093 | −0.000088 |
BiGRU | 0.000417 | 0.000326 | 0.000479 | −0.000279 | −0.000153 |
RNNs | Mean Squared Error (MSE) | ||||
only_r | abs_r | his_vol | and | ||
LSTM | 0.000108 | 0.000090 | 0.000082 | 0.000078 | 0.000074 |
BiLSTM | 0.000108 | 0.000090 | 0.000083 | 0.000081 | 0.000075 |
GRU | 0.000083 | 0.000089 | 0.000083 | 0.000081 | 0.000076 |
BiGRU | 0.000083 | 0.000088 | 0.000084 | 0.000080 | 0.000078 |
RNNs | Mean Absolute Percentage Error (MAPE) | ||||
only_r | abs_r | his_vol | and | ||
LSTM | 5.179741 | 4.620230 | 5.429739 | 4.785479 | 5.239507 |
BiLSTM | 5.860047 | 5.236483 | 4.067028 | 4.830518 | 5.101785 |
GRU | 4.668557 | 5.116752 | 4.647369 | 4.995071 | 5.157459 |
BiGRU | 5.239868 | 4.761588 | 4.574991 | 5.102364 | 5.371415 |
RNNs | Relative Absolute Error (RAE) | ||||
only_r | abs_r | his_vol | and | ||
LSTM | 0.706238 | 0.645170 | 0.615501 | 0.600626 | 0.583254 |
BiLSTM | 0.706757 | 0.644208 | 0.618452 | 0.610441 | 0.589258 |
GRU | 0.619729 | 0.639924 | 0.618881 | 0.611304 | 0.591806 |
BiGRU | 0.622382 | 0.638673 | 0.621853 | 0.609870 | 0.600117 |
RNNs | Correlation Coefficient (r) | ||||
only_r | abs_r | his_vol | and | ||
LSTM | 0.575273 | 0.588556 | 0.637340 | 0.659337 | 0.685704 |
BiLSTM | 0.559028 | 0.588571 | 0.636998 | 0.643334 | 0.676700 |
GRU | 0.636332 | 0.595553 | 0.632082 | 0.641523 | 0.675415 |
BiGRU | 0.626024 | 0.598658 | 0.626373 | 0.643753 | 0.672501 |
Test period | Mean Forecast Error (MFE) | ||||
only r | abs_r | his_vol | and | ||
2018∼2020 | 0.000417 | −0.000175 | −0.000496 | −0.000279 | −0.000153 |
2018 | −0.000811 | −0.000102 | −0.000831 | −0.000207 | −0.000263 |
2019 | −0.001465 | −0.000881 | −0.001133 | −0.000565 | −0.001031 |
2020 | 0.002368 | 0.000460 | 0.000481 | −0.000177 | 0.000583 |
Test period | Mean Squared Error (MSE) | ||||
only r | abs_r | his_vol | and | ||
2018∼2020 | 0.000083 | 0.000088 | 0.000082 | 0.000078 | 0.000074 |
2018 | 0.000048 | 0.000056 | 0.000048 | 0.000047 | 0.000047 |
2019 | 0.000024 | 0.000027 | 0.000025 | 0.000023 | 0.000024 |
2020 | 0.000178 | 0.000182 | 0.000172 | 0.000164 | 0.000147 |
Test period | Mean Absolute Percentage Error (MAPE) | ||||
only r | abs_r | his_vol | and | ||
2018∼2020 | 4.668557 | 4.620230 | 4.067028 | 4.785479 | 5.101785 |
2018 | 6.815235 | 5.507806 | 5.114793 | 6.680978 | 6.936253 |
2019 | 5.582146 | 5.977801 | 4.980626 | 5.675435 | 6.080174 |
2020 | 1.321910 | 2.366138 | 2.007365 | 1.967344 | 1.950882 |
Test period | Relative Absolute Error (RAE) | ||||
only r | abs_r | his_vol | and | ||
2018∼2020 | 0.619729 | 0.638673 | 0.615501 | 0.600626 | 0.583254 |
2018 | 0.645257 | 0.698807 | 0.645018 | 0.637218 | 0.641716 |
2019 | 0.616997 | 0.656017 | 0.628997 | 0.608554 | 0.614759 |
2020 | 0.613622 | 0.620194 | 0.603294 | 0.589567 | 0.558003 |
Test period | Correlation Coefficient (r) | ||||
only r | abs_r | his_vol | and | ||
2018∼2020 | 0.559028 | 0.588556 | 0.626373 | 0.641523 | 0.672501 |
2018 | 0.452544 | 0.271690 | 0.445440 | 0.452020 | 0.390719 |
2019 | 0.463970 | 0.341053 | 0.404548 | 0.485692 | 0.484991 |
2020 | 0.631301 | 0.597044 | 0.623261 | 0.635442 | 0.682741 |
Mean Forecast Error (MFE) | |||||
only r | abs_r | his_vol | and | ||
[0.05, ∞) | 0.035077 | 0.039647 | 0.040481 | 0.035353 | 0.035279 |
[0.04, 0.05) | 0.020548 | 0.021101 | 0.019323 | 0.015931 | 0.016033 |
[0.03, 0.04) | 0.018455 | 0.015994 | 0.015626 | 0.015897 | 0.017917 |
[0.02, 0.03) | 0.012032 | 0.010949 | 0.008980 | 0.008744 | 0.009469 |
[0.01, 0.02) | 0.004302 | 0.003037 | 0.001996 | 0.002598 | 0.002950 |
[0, 0.01] | −0.001985 | −0.002574 | −0.001858 | −0.002427 | −0.002720 |
Mean Squared Error (MSE) | |||||
only r | abs_r | his_vol | and | ||
[0.05, ∞) | 0.002117 | 0.002187 | 0.002202 | 0.001943 | 0.001831 |
[0.04, 0.05) | 0.000606 | 0.000728 | 0.000507 | 0.000477 | 0.000391 |
[0.03, 0.04) | 0.000446 | 0.000430 | 0.000368 | 0.000382 | 0.000394 |
[0.02, 0.03) | 0.000216 | 0.000200 | 0.000160 | 0.000178 | 0.000153 |
[0.01, 0.02) | 0.000044 | 0.000052 | 0.000042 | 0.000048 | 0.000033 |
[0, 0.01] | 0.000015 | 0.000027 | 0.000025 | 0.000026 | 0.000026 |
Mean Absolute Percentage Error (MAPE) | |||||
only r | abs_r | his_vol | and | ||
[0.05, ∞) | 0.531546 | 0.487245 | 0.487680 | 0.454895 | 0.491992 |
[0.04, 0.05) | 0.516462 | 0.551105 | 0.458238 | 0.450806 | 0.395999 |
[0.03, 0.04) | 0.587881 | 0.561016 | 0.495632 | 0.517947 | 0.550990 |
[0.02, 0.03) | 0.574537 | 0.545820 | 0.469157 | 0.489975 | 0.465984 |
[0.01, 0.02) | 0.398782 | 0.380984 | 0.348474 | 0.389920 | 0.338659 |
[0, 0.01] | 6.278127 | 6.221458 | 5.463714 | 6.459031 | 6.900582 |
Relative Absolute Error (RAE) | |||||
only r | abs_r | his_vol | and | ||
[0.05, ∞) | 0.569846 | 0.579202 | 0.581125 | 0.545842 | 0.529862 |
[0.04, 0.05) | 0.540665 | 0.592765 | 0.494642 | 0.479969 | 0.434611 |
[0.03, 0.04) | 0.636086 | 0.624674 | 0.578241 | 0.588744 | 0.597860 |
[0.02, 0.03) | 0.604180 | 0.580934 | 0.519819 | 0.548542 | 0.508595 |
[0.01, 0.02) | 0.473051 | 0.510815 | 0.462224 | 0.490842 | 0.407824 |
[0, 0.01] | 0.799368 | 1.069389 | 1.017264 | 1.031607 | 1.036734 |
Correlation Coefficient (r) | |||||
only r | abs_r | his_vol | and | ||
[0.05, ∞) | 0.225248 | −0.010060 | 0.052341 | 0.163925 | 0.237050 |
[0.04, 0.05) | 0.484073 | −0.028696 | 0.110229 | 0.077351 | 0.324021 |
[0.03, 0.04) | 0.194590 | 0.023705 | −0.048152 | −0.022601 | −0.034044 |
[0.02, 0.03) | 0.205409 | 0.275913 | 0.188228 | 0.264143 | 0.273881 |
[0.01, 0.02) | 0.128505 | 0.078567 | 0.106038 | 0.137721 | 0.182979 |
[0, 0.01] | 0.101981 | 0.116562 | 0.113245 | 0.127867 | 0.135427 |
Test period | Mean Forecast Error (MFE) | |||||
only r | abs_r | his_vol | and | new two-stage forecasting model | ||
2018∼2020 | 0.000417 | −0.000175 | −0.000496 | −0.000279 | −0.000153 | 0.000449 |
2018 | −0.000811 | −0.000102 | −0.000831 | −0.000207 | −0.000263 | −0.000234 |
2019 | −0.001465 | −0.000881 | −0.001133 | −0.000565 | −0.001031 | −0.000398 |
2020 | 0.002368 | 0.000460 | 0.000481 | −0.000177 | 0.000583 | 0.001983 |
Test period | Mean Squared Error (MSE) | |||||
only r | abs_r | his_vol | and | new two-stage forecasting model | ||
2018∼2020 | 0.000083 | 0.000088 | 0.000082 | 0.000078 | 0.000074 | 0.000073 |
2018 | 0.000048 | 0.000056 | 0.000048 | 0.000047 | 0.000047 | 0.000046 |
2019 | 0.000024 | 0.000027 | 0.000025 | 0.000023 | 0.000024 | 0.000023 |
2020 | 0.000178 | 0.000182 | 0.000172 | 0.000164 | 0.000147 | 0.000148 |
Test period | Mean Absolute Percentage Error (MAPE) | |||||
only r | abs_r | his_vol | and | new two-stage forecasting model | ||
2018∼2020 | 4.668557 | 4.620230 | 4.067028 | 4.785479 | 5.101785 | 4.853296 |
2018 | 6.815235 | 5.507806 | 5.114793 | 6.680978 | 6.936253 | 6.788785 |
2019 | 5.582146 | 5.977801 | 4.980626 | 5.675435 | 6.080174 | 5.827391 |
2020 | 1.321910 | 2.366138 | 2.007365 | 1.967344 | 1.950882 | 1.939831 |
Test period | Relative Absolute Error (RAE) | |||||
only r | abs_r | his_vol | and | new two-stage forecasting model | ||
2018∼2020 | 0.619729 | 0.638673 | 0.615501 | 0.600626 | 0.583254 | 0.578949 |
2018 | 0.645257 | 0.698807 | 0.645018 | 0.637218 | 0.641716 | 0.636665 |
2019 | 0.616997 | 0.656017 | 0.628997 | 0.608554 | 0.614759 | 0.605353 |
2020 | 0.613622 | 0.620194 | 0.603294 | 0.589567 | 0.558003 | 0.560339 |
Test period | Correlation Coefficient (r) | |||||
only r | abs_r | his_vol | and | new two-stage forecasting model | ||
2018∼2020 | 0.559028 | 0.588556 | 0.626373 | 0.641523 | 0.672501 | 0.692084 |
2018 | 0.452544 | 0.271690 | 0.445440 | 0.452020 | 0.390719 | 0.472469 |
2019 | 0.463970 | 0.341053 | 0.404548 | 0.485692 | 0.484991 | 0.510441 |
2020 | 0.631301 | 0.597044 | 0.623261 | 0.635442 | 0.682741 | 0.708169 |
Test period | Model 1 | Model 2 | DM | p-value |
only r | 0.40851 | 0.6832 | ||
new two-stage | abs_r | 2.138974 | 0.0334 | |
2018 | forecasting | his_vol | 1.636703 | 0.1029 |
model | 1.289953 | 0.1983 | ||
and | 0.662737 | 0.5081 | ||
Test period | Model 1 | Model 2 | DM | p-value |
only r | −1.148275 | 0.2519 | ||
new two-stage | abs_r | 2.368063 | 0.0186 | |
2019 | forecasting | his_vol | 3.851128 | 0.0001 |
model | −1.096094 | 0.2741 | ||
and | 2.496623 | 0.0132 | ||
Test period | Model 1 | Model 2 | DM | p-value |
only r | 1.987767 | 0.0479 | ||
new two-stage | abs_r | 3.082361 | 0.0023 | |
2020 | forecasting | his_vol | 2.274708 | 0.0238 |
model | 2.093985 | 0.0373 | ||
and | 0.376932 | 0.7065 | ||
Test period | Model 1 | Model 2 | DM | p-value |
only r | 1.620336 | 0.1056 | ||
new two-stage | abs_r | 4.286774 | 0.0000 | |
2018∼2020 | forecasting | his_vol | 3.815629 | 0.0001 |
model | 2.196733 | 0.0283 | ||
and | 1.766298 | 0.0778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, P.; Lee, M. Forecasting the Volatility of the Stock Index with Deep Learning Using Asymmetric Hurst Exponents. Fractal Fract. 2022, 6, 394. https://doi.org/10.3390/fractalfract6070394
Cho P, Lee M. Forecasting the Volatility of the Stock Index with Deep Learning Using Asymmetric Hurst Exponents. Fractal and Fractional. 2022; 6(7):394. https://doi.org/10.3390/fractalfract6070394
Chicago/Turabian StyleCho, Poongjin, and Minhyuk Lee. 2022. "Forecasting the Volatility of the Stock Index with Deep Learning Using Asymmetric Hurst Exponents" Fractal and Fractional 6, no. 7: 394. https://doi.org/10.3390/fractalfract6070394
APA StyleCho, P., & Lee, M. (2022). Forecasting the Volatility of the Stock Index with Deep Learning Using Asymmetric Hurst Exponents. Fractal and Fractional, 6(7), 394. https://doi.org/10.3390/fractalfract6070394