Applications of q-Hermite Polynomials to Subclasses of Analytic and Bi-Univalent Functions
Abstract
:1. Introduction and Background Review
2. A Set of Lemmas
3. Coefficient Estimates for the Class
4. Fekete–Szegö Inequalities for the Function Class
5. of
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspect of Contemporary Complex Analysis. In Proceedings of the NATO Advanced Study Institute Held at the University of Durham, Durham, UK, 1–20 July 1979; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T. On some classes of bi-univalent functions. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Khan, B.; Liu, Z.-G.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of q-derivative operator to the subclass of bi-Univalent functions involving q-Chebyshev polynomials. J. Math. 2022, 2022, 8162182. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Khan, B.; Liu, Z.G.; Srivastava, H.M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent q-starlike functions. Maejo Int. J. Sci. Technol. 2021, 15, 61–72. [Google Scholar]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B. Some geometric properties of a family of analytic functions involving a generalized q-operator. Symmetry 2020, 12, 291. [Google Scholar] [CrossRef]
- Ismail, E.H.; Stanton, D.; Viennot, G. The combinatorics of q-Hermite polynomial and the Askey-Wilson Integral. Eur. J. Comb. 1987, 8, 379–392. [Google Scholar] [CrossRef]
- Chavda, N.D. Average-fluctuation separation in energy levels in quantum many-particle systems with k-body interactions using q-Hermite polynomials. arXiv 2021, arXiv:2111.12087. [Google Scholar]
- Rao, P.; Vyas, M.; Chavda, N.D. Eigenstate structure in many-body bosonic system: Analysis using random matrices and q-Hermite polynomial. arXiv 1933, arXiv:2111.08820. [Google Scholar]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Fekete, M.; Szego, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 2006, 7, 50. [Google Scholar]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Krishna, D.V.; RamReddy, T. Second Hankel determinant for the class of Bazilevic functions. Stud. Univ. Babes-Bolyai Math. 2015, 60, 413–420. [Google Scholar]
- Duren, P.L. Univalent Functions. In Grundlehrender Mathematischer Wissencchaffer; Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient Bounds for the Inverse of a Function with Derivative. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Khan, B.; Shaba, T.G.; Ro, J.-S.; Araci, S.; Khan, M.G. Applications of q-Hermite Polynomials to Subclasses of Analytic and Bi-Univalent Functions. Fractal Fract. 2022, 6, 420. https://doi.org/10.3390/fractalfract6080420
Zhang C, Khan B, Shaba TG, Ro J-S, Araci S, Khan MG. Applications of q-Hermite Polynomials to Subclasses of Analytic and Bi-Univalent Functions. Fractal and Fractional. 2022; 6(8):420. https://doi.org/10.3390/fractalfract6080420
Chicago/Turabian StyleZhang, Caihuan, Bilal Khan, Timilehin Gideon Shaba, Jong-Suk Ro, Serkan Araci, and Muhammad Ghaffar Khan. 2022. "Applications of q-Hermite Polynomials to Subclasses of Analytic and Bi-Univalent Functions" Fractal and Fractional 6, no. 8: 420. https://doi.org/10.3390/fractalfract6080420
APA StyleZhang, C., Khan, B., Shaba, T. G., Ro, J. -S., Araci, S., & Khan, M. G. (2022). Applications of q-Hermite Polynomials to Subclasses of Analytic and Bi-Univalent Functions. Fractal and Fractional, 6(8), 420. https://doi.org/10.3390/fractalfract6080420