An Implicit Difference Scheme for the Fourth-Order Nonlinear Evolution Equation with Multi-Term Riemann–Liouvile Fractional Integral Kernels
Abstract
:1. Introduction
2. The Construction of the Fully Discrete Scheme
3. Existence and Stability
3.1. Stability
3.2. Existence
4. Uniqueness and Convergence
4.1. Convergence
4.2. Uniqueness
5. Numerical Results
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedman, A.; Shinbrot, M. Volterra integral equations in Banach space. Tran 1967, 126, 131–179. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Grimmer, R.C.; Pritchard, A.J. Analytic resolvent operators for integral equations in Banach space. J. Differ. Equations 1983, 50, 234–259. [Google Scholar] [CrossRef]
- Renardy, M. Mathematical Analysis of Viscoelastic Flows. Annu. Rev. Fluid Mech. 1989, 21, 21–34. [Google Scholar] [CrossRef]
- Amblard, F.; Maggs, A.C.; Yurke, B.; Pargellis, A.N.; Leibler, S. Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 1996, 77, 4470. [Google Scholar] [CrossRef] [PubMed]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives—Theory and Applications; Gordon and Breach Science Publishers: New York, NY, USA, 1993. [Google Scholar]
- Seki, K.; Wojcik, M.; Tachiya, M. Fractional reaction–diffusion equation. J. Chem. Phys. 2003, 119, 2165–2174. [Google Scholar] [CrossRef]
- Sanz-Serna, J.M. A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 1988, 25, 319–327. [Google Scholar] [CrossRef]
- Lopez-Marcos, J.C. A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 1990, 27, 20–31. [Google Scholar] [CrossRef]
- Tao, T. A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 1993, 11, 309–319. [Google Scholar]
- Pani, A.K.; Fairweather, G. An H1-Galerkin mixed finite element method for an evolution equation with a positive-type memory term. SIAM J. Numer. Anal. 2003, 40, 1475–1490. [Google Scholar] [CrossRef]
- Xu, D. Numerical asymptotic stability for the integro-differential equations with the multi-term kernels. Appl. Math. Comput. 2017, 309, 107–132. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, D.; Dai, X. Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel. Comput. Appl. Math. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, D.; Chen, H. A weak Galerkin finite element method for multi-term time-fractional diffusion equations. East Asian J. Appl. Math. 2018, 8, 181–193. [Google Scholar] [CrossRef]
- Saadatmandi, A.; Dehghan, M.; Azizi, M.R. The Sinc–Legendre collocation method for a class of fractional convection diffusion equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4125–4136. [Google Scholar] [CrossRef]
- Dehghan, M.; Manafian, J.; Saadatmandi, A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial. Differ. Equations 2010, 26, 448–479. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, F.; Turner, I.; Anh, V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227, 886–897. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46, 1079–1095. [Google Scholar] [CrossRef]
- Wei, L.; Dai, H.; Zhang, D.; Si, Z. Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 2014, 51, 175–192. [Google Scholar] [CrossRef]
- Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719. [Google Scholar] [CrossRef]
- Lubich, C. Convolution quadrature and discretized operational calculus (I). Numer. Math. 1988, 52, 187–199. [Google Scholar] [CrossRef]
- Chen, H.; Xu, D. A second-order fully discrete difference scheme for a nonlinear partial integro-differential equation. J. Syst. Sci. Math. Sci. 2008, 28, 51–70. (In Chinese) [Google Scholar]
- Yupen, K.; Sernasanz, J.M. Convergence of Methods for the Numerical Solution of the Korteweg-de Vries Equation. IMA J. Numer. Anal. 1981, 1, 215–221. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L. A compact finite difference scheme for the fourth-order fractional diffusion-wave system. Comput. Phys. Commun. 2011, 182, 1645–1650. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L. On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems. Appl. Math. Comput. 2011, 218, 5019–5034. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Wu, H. Error estimates of Crank-Nicolson type difference schemes for the subdiffusion equation. SIAM J. Numer. Anal. 2011, 49, 2302–2322. [Google Scholar] [CrossRef]
- Sun, Z. Numerical Methods for Partial Differential Equations, 2nd ed.; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Zhou, Y. Application of Discrete Functional Analysis to the Finite Difference Method; International Academic: Beijing, China, 1990. [Google Scholar]
- Chen, H.; Gan, S.; Xu, D.; Liu, Q. A second order BDF compact difference scheme for fractional order Volterra equations. Int. J. Comp. Math. 2016, 93, 1140–1154. [Google Scholar] [CrossRef]
- Qiu, W.; Xu, D.; Chen, H. A formally second-order BDF finite difference scheme for the integro-differential equations with the multi-term kernels. Int. J. Comput. Math. 2020, 97, 2055–2073. [Google Scholar] [CrossRef]
- Xu, D. The global behavior of time discretization for an abstract Volterra equation in Hilbert space. Calcolo 1997, 34, 71–104. [Google Scholar]
- Qiu, W.; Chen, H.; Zheng, X. An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations. Math. Comput. Simul. 2019, 166, 298–314. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Sloan, I.H.; Thomée, V. Time discretization of an integro-differential equation of parabolic type. SIAM J. Numer. Anal. 1986, 23, 1052–1061. [Google Scholar] [CrossRef]
- Besse, C. Relaxation scheme for the nonlinear Schrödinger equation and Davey-Stewartson systems. Comptes Rendus de l’Académie des Sci.-Ser. I-Math. 1998, 326, 1427–1432. [Google Scholar]
- Zouraris, G.E. Error estimation of the Besse relaxation scheme for a semilinear heat equation. ESAIM Math. Model. Numer. Anal. 2021, 55, 301–328. [Google Scholar] [CrossRef]
Methods | J | Error | Iterative | ||
---|---|---|---|---|---|
16 | − | − | |||
32 | − | ||||
64 | − | ||||
128 | − | ||||
16 | − | − | |||
32 | − | ||||
64 | − | ||||
128 | − | ||||
16 | − | − | |||
32 | − | ||||
64 | − | ||||
128 | − | ||||
16 | − | 46 | |||
32 | 87 | ||||
64 | 155 | ||||
128 | 259 | ||||
16 | − | 46 | |||
32 | 87 | ||||
64 | 155 | ||||
128 | 259 | ||||
16 | − | 45 | |||
32 | 86 | ||||
64 | 154 | ||||
128 | 259 | ||||
16 | − | 46 | |||
32 | 87 | ||||
64 | 154 | ||||
128 | 259 | ||||
16 | − | 46 | |||
32 | 87 | ||||
64 | 154 | ||||
128 | 259 | ||||
16 | − | 45 | |||
32 | 86 | ||||
64 | 153 | ||||
128 | 259 |
Methods | N | Error | Iterative | ||
---|---|---|---|---|---|
16 | − | − | |||
32 | − | ||||
64 | − | ||||
128 | − | ||||
16 | − | − | |||
32 | − | ||||
64 | − | ||||
128 | − | ||||
16 | − | − | |||
32 | − | ||||
64 | − | ||||
128 | − | ||||
16 | − | 46 | |||
32 | 87 | ||||
64 | 155 | ||||
128 | 259 | ||||
16 | − | 46 | |||
32 | 87 | ||||
64 | 155 | ||||
128 | 259 | ||||
16 | − | 45 | |||
32 | 86 | ||||
64 | 154 | ||||
128 | 259 | ||||
16 | − | 46 | |||
32 | 87 | ||||
64 | 154 | ||||
128 | 259 | ||||
16 | − | 46 | |||
32 | 87 | ||||
64 | 154 | ||||
128 | 259 | ||||
16 | − | 45 | |||
32 | 86 | ||||
64 | 153 | ||||
128 | 259 |
Methods | J | Error | Iterative | ||
---|---|---|---|---|---|
16 | − | − | |||
32 | 2.092 | − | |||
64 | 2.423 | − | |||
16 | − | − | |||
32 | − | ||||
64 | − | ||||
16 | − | 2048 | |||
32 | 2.076 | 2048 | |||
64 | 2.333 | 2048 | |||
16 | − | 2048 | |||
32 | 2.068 | 2048 | |||
64 | 2.294 | 2048 | |||
16 | − | 2048 | |||
32 | 2.076 | 2048 | |||
64 | 2.333 | 2048 | |||
16 | − | 2048 | |||
32 | 2.068 | 2048 | |||
64 | 2.294 | 2048 |
Methods | N | Error | Iterative | ||
---|---|---|---|---|---|
16 | − | − | |||
32 | 0.993 | − | |||
64 | 1.011 | − | |||
16 | − | − | |||
32 | − | ||||
64 | − | ||||
16 | − | 62 | |||
32 | 0.986 | 109 | |||
64 | 1.010 | 192 | |||
16 | − | 62 | |||
32 | 0.986 | 110 | |||
64 | 1.011 | 192 | |||
16 | − | 48 | |||
32 | 0.985 | 96 | |||
64 | 1.012 | 192 | |||
16 | − | 48 | |||
32 | 0.984 | 96 | |||
64 | 1.010 | 192 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Yang, X.; Zhang, H.; Tian, Q. An Implicit Difference Scheme for the Fourth-Order Nonlinear Evolution Equation with Multi-Term Riemann–Liouvile Fractional Integral Kernels. Fractal Fract. 2022, 6, 443. https://doi.org/10.3390/fractalfract6080443
Jiang X, Yang X, Zhang H, Tian Q. An Implicit Difference Scheme for the Fourth-Order Nonlinear Evolution Equation with Multi-Term Riemann–Liouvile Fractional Integral Kernels. Fractal and Fractional. 2022; 6(8):443. https://doi.org/10.3390/fractalfract6080443
Chicago/Turabian StyleJiang, Xiaoxuan, Xuehua Yang, Haixiang Zhang, and Qingqing Tian. 2022. "An Implicit Difference Scheme for the Fourth-Order Nonlinear Evolution Equation with Multi-Term Riemann–Liouvile Fractional Integral Kernels" Fractal and Fractional 6, no. 8: 443. https://doi.org/10.3390/fractalfract6080443
APA StyleJiang, X., Yang, X., Zhang, H., & Tian, Q. (2022). An Implicit Difference Scheme for the Fourth-Order Nonlinear Evolution Equation with Multi-Term Riemann–Liouvile Fractional Integral Kernels. Fractal and Fractional, 6(8), 443. https://doi.org/10.3390/fractalfract6080443