Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme
Abstract
:1. Introduction
2. Properties of Conformable Fractional Derivative
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (iv)
- (v)
3. The Fractional Complex Transformation
4. Solution of Complex Fractional Models via MSE Scheme
4.1. The Complex tFSE
4.2. The stFDM Governing Wave Propagation in Low-Pass ETLM
5. Graphical Representations
5.1. The Physical Illustration of Solutions to the Complex tFSM
5.2. The Physical Illustration of Solutions to stFDM-Governing Signal Transmission in Low-Pass ETLM
6. Concluding Remarks and Future Tasks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives Theory and Applications; Gordonand Breach: New York, NY, USA, 1993; Volume 11. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Liu, S.; Fu, Z.; Liu, S.; Zhao, Q. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 2001, 289, 69–74. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 2011, 375, 1069–1073. [Google Scholar] [CrossRef]
- Cui, M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228, 7792–7804. [Google Scholar] [CrossRef]
- Safari, M.; Ganji, D.D.; Moslemi, M. Application of He’s variational iteration method and Adomian’s decomposition method to the fractional KdV-Burgers-KU-Ramoto equation. Comput. Math. Appls. 2009, 58, 2091–2097. [Google Scholar]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Ekici, M.; Mirzazadeh, M.; Eslami, M.; Zhou, Q.; Moshokoa, S.P.; Biswas, A.; Belic, M. Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Optik–Int. J. Light Elec. Optics. 2016, 127, 10659–10669. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Zhang, J. The (1/G)-expansion method and traveling wave solutions of nonlinear evolution′ (G equations in mathematical physics. Phys Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- Gupta, P.K.; Singh, M. Homotopy perturbation method for fractional Fornberg-Whitham equation. Comput. Math. Appls. 2011, 61, 250–254. [Google Scholar] [CrossRef]
- Osman, M.S.; Korkmaz, A.; Rezazadeh, H.; Mirzazadeh, M.; Eslami, M.; Zhou, Q. The unified method for conformable time fractional Schrdinger equation with perturbation terms. Chinese J. Phys. 2018, 56, 2500–2506. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Zhang, L. A direct algorithm of exp-function method for nonlinear evolution equations in fluids. Therm. Sci. 2016, 20, 881–884. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B. General projective Riccati equation method and exact solutions for generalized KdV-type and KdV-Burger-type equations with nonlinear term of any order. Chaos. Soli. Fract. 2004, 19, 977–984. [Google Scholar] [CrossRef]
- Pandir, Y.; Yildirim, A. Analytical approach for the fractional differential equations by using the extended tanh method. Waves Rand. Compl. Media 2018, 28, 399–410. [Google Scholar] [CrossRef]
- Jawad, J.M.; Petkovic, A.M.D. Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 2010, 217, 869–877. [Google Scholar]
- Bin, Z. -Expansion Method for solving fractional partial differential equations in the theory of Mathematical Physics. Communi. Theor. Phy. 2012, 58, 623. [Google Scholar]
- Sulaiman, T.; Yusuf, A.; Abdeljabbar, A.; Alquran, M. Dynamics of lump collision phenomena to the (3+1)-dimensional nonlinear evolution equation. J. Geo. Phys. 2021, 169, 104347. [Google Scholar] [CrossRef]
- Abdeljabbar, A. New double Wronskian solutions for a generalized (2+1)-dimensional Boussinesq system with variable coefficients. PDE Appl. Math. 2021, 3, 100022. [Google Scholar]
- Abdeljabbar, A.; Tran, T.D. Pfaffian solutions to a generalized KP system with variable coefficients. Appl. Math. Sci. 2016, 10, 2351–2368. [Google Scholar] [CrossRef]
- Jumarie, G. Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results.Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar]
- Kirane, M.; Abdeljabbar, A. Non-existence of global solutions of systems of time fractional differential equations posed on the Heisenberg group. Math. Meth. Appl. Sci. 2022, in press. [CrossRef]
- Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef]
- Alam, M.N.; Li, X. New soliton solutions to the nonlinear complex fractional Schrödinger equation and the conformable time-fractional Klein-Gordon equation with quadratic and cubic nonlinearity. Phys. Scr. 2020, 95, 045224. [Google Scholar] [CrossRef]
- Abdoulkary, S.; Beda, T.; Dafounamssou, O.; Tafo, E.W.; Mohamadou, A. Dynamics of solitary pulses in the nonlinear low-pass electrical transmission lines through the auxiliary equation method. J. Mod. Phys. Appl. 2013, 2, 69–87. [Google Scholar]
- Fedele, R.; Miele, G.; Palumbo, L.; Vaccaro, V.G. Thermal wave model for nonlinear longitudinal dynamics in particle accelerators. Phys. Lett. A 1993, 179, 407. [Google Scholar] [CrossRef]
- Kivshar, Y.; Agrawal, G.P. Optical Solitons from Fibers to Photonic Crystals; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of bose Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463. [Google Scholar] [CrossRef]
- Beitia, J.B.; Calvo, G.F. Exact solutions for the quintic nonlinear Schrödinger equation withtime and space modulated nonlinearities and potentials. Phys. Lett. A 2009, 373, 448. [Google Scholar] [CrossRef]
- Xu, T.; Tian, B.; Li, L.L.; Lu, X.; Zhang, C. Dynamics of Alfven solitons in inhomogenous plasmas. Phys. Plasm. 2008, 15, 102307. [Google Scholar] [CrossRef]
- Hammad, M.A.; Khalil, R. Conformable fractional heat differential equation. Int. J. Pure Appl. Math. 2014, 94, 215–221. [Google Scholar] [CrossRef]
- Khalil, R.; Horani, A.L.M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Rahman, Z.; Ali, M.Z.; Roshid, H.O. Closed form soliton solutions of three nonlinear fractional models through a proposed Improved Kudryashov method. Chin. Phys. B 2021, 30, 050202. [Google Scholar] [CrossRef]
- Abu-Shady, M.; Kaabar, M.K.A. A generalized definition of the fractional derivative with applications. Math. Probs. Eng. 2021, 2021, 9444803. [Google Scholar] [CrossRef]
- Abdeljabbar, A.; Roshid, H.O.; Aldurayhim, A. A bright, dark, and rogue wave soliton solutions of the quadratic nonlinear Klein–Gordon equation. Symmetry 2022, 14, 1223. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, Z.; Abdeljabbar, A.; Harun-Or-Roshid; Ali, M.Z. Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme. Fractal Fract. 2022, 6, 444. https://doi.org/10.3390/fractalfract6080444
Rahman Z, Abdeljabbar A, Harun-Or-Roshid, Ali MZ. Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme. Fractal and Fractional. 2022; 6(8):444. https://doi.org/10.3390/fractalfract6080444
Chicago/Turabian StyleRahman, Zillur, Alrazi Abdeljabbar, Harun-Or-Roshid, and M. Zulfikar Ali. 2022. "Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme" Fractal and Fractional 6, no. 8: 444. https://doi.org/10.3390/fractalfract6080444
APA StyleRahman, Z., Abdeljabbar, A., Harun-Or-Roshid, & Ali, M. Z. (2022). Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme. Fractal and Fractional, 6(8), 444. https://doi.org/10.3390/fractalfract6080444