Symmetry Analysis and PT-Symmetric Extension of the Fifth-Order Korteweg-de Vries-Like Equation
Abstract
:1. Introduction
2. Symmetry Analysis and Conservation Laws for
2.1. Symmetry Analysis
2.2. Conservation Laws
2.3. Reciprocal Bcklund Transformations to Conservation of Momentum and Energy
3. Symmetry Analysis and Travelling Wave Solutions for
3.1. Symmetry Analysis
3.2. Travelling Wave Solutions
4. Symmetry Analysis for
Symmetry Analysis for Time Fractional form of Equation (28)
5. Symmetry Analysis and Reductions for
5.1. Symmetry Analysis
5.2. Reductions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bender, C.M.; Brody, D.C.; Chen, J.H.; Furlan, E. PT-symmetric extension of the Korteweg-de Vries equation. J. Phys. A Math. Theor. 2007, 40, F153–F160. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1997, 80, 5243–5246. [Google Scholar] [CrossRef]
- Zhou, Q.; Biswas, A. Optical solitons in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr law nonlinearity. Superlatt. Microstruc. 2017, 109, 588–598. [Google Scholar] [CrossRef]
- Hirota, R. Exact solution of the Korteweg-deVries equation for multiple colli- sions of solitons. Phys. Rev. Lett. 1971, 27, 1192–1194. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transformation; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Guo, B.L.; Ling, L.M.; Liu, Q.P. High-order solutions and generalized Darboux Transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 2013, 130, 317–344. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Z.; Zhao, Y.; Deng, Z. Symmetry breaking of infinite-dimensional dynamic system. Appl. Math. Lett. 2020, 103, 106207. [Google Scholar] [CrossRef]
- Hu, W.; Xu, M.; Song, J.; Gao, Q.; Deng, Z. Coupling dynamic behaviors of flexible stretching Hub-Beam system. Mech. Syst. Sign. Proc. 2021, 151, 107389. [Google Scholar] [CrossRef]
- Hu, W.; Yu, L.; Deng, Z. Minimum control energy of spatial beam with assumed attitude adjustment target. Acta Mech. Soli. Sini. 2020, 33, 51–60. [Google Scholar] [CrossRef]
- Olver, P.J. Application of Lie Group to Differential Equation; Springer: New York, NY, USA, 1986. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Vu, K.T.; Butcher, J.; Carminati, J. Similarity solutions of partial differential equations using DESOLV. Comp. Phys. Comm. 2007, 176, 682–693. [Google Scholar] [CrossRef]
- Dimas, S.; Tsoubelis, D. SYM: A new symmetry-finding package for Mathematica. In The 10 th International Conference in Modern Group Analysis; Ibragimov, N.H., Sophocleous, C., Damianou, P.A., Eds.; University of Cyprus: Nicosia, Cyprus, 2005; pp. 64–70. [Google Scholar]
- Zhao, Z.L.; He, L.; Lie, L. Symmetry, nonlocal symmetry analysis, and interaction of solutions of a (2 + 1)-dimensional KdV-mKdV equation. Theor. Math. Phys. 2021, 206, 142–162. [Google Scholar] [CrossRef]
- Wang, G.; Wazwaz, A.M. A new (3 + 1)-dimensional KdV equation and mKdV equation with their corresponding fractional forms. Fractals 2022, 30, 2250081. [Google Scholar] [CrossRef]
- Wang, G.; Wazwaz, A.M. On the modified Gardner type equation and its time fractional form. Chaos Solitons Fractals 2022, 123, 127768. [Google Scholar] [CrossRef]
- Wang, G. A new (3 + 1)-dimensional Schrödinger equation: Derivation, soliton solutions and conservation laws. Nonlinear Dyn. 2021, 104, 1595–1602. [Google Scholar] [CrossRef]
- Wang, G. A novel (3 + 1)-dimensional sine-Gorden and a sinh-Gorden equation: Derivation, symmetries and conservation laws. Appl. Math. Lett. 2021, 113, 106768. [Google Scholar] [CrossRef]
- Kawahara, T. Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan 1972, 33, 260–264. [Google Scholar] [CrossRef]
- Biswas, A. Solitary wave solution for the generalized Kawahara equation. Appl. Math. Lett. 2009, 22, 208–210. [Google Scholar] [CrossRef]
- Wazwaz, A.M. New solitary wave solutions to the modified Kawahara equation. Phys. Lett. A 2007, 360, 588–592. [Google Scholar] [CrossRef]
- Freire, I.L.; Sampaio, J.C.S. Nonlinear self-adjointness of a generalized fifth-order KdV equation. J. Phys. A Math. Theor. 2012, 45, 032001. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Liu, L. Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations. J. Math. Anal. Appl. 2010, 368, 551–558. [Google Scholar] [CrossRef]
- Abbasbandy, S. Homotopy analysis method for the Kawahara equation. Nonlinear Anal. Real. 2010, 11, 307–312. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Salas, A.H.; Alharthi, M.R. Novel analytical cnoidal and solitary wave solutions of the Extended Kawahara equation. Chaos. Soliton. Fract. 2021, 147, 110965. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Salas, A.H.; Alyousef, H.A.; Alharthi, M.R. Novel exact and approximate solutions to the family of the forced damped Kawahara equation and modeling strong nonlinear waves in a plasma. Chin. J. Phys. 2022, 77, 2454–2471. [Google Scholar] [CrossRef]
- Aljahdaly, N.H.; El-Tantawy, S.A. Novel anlytical solution to the damped Kawahara equation and its application for modeling the dissipative nonlinear structures in a fluid medium. J. Ocean. Eng. Sci. 2021. [Google Scholar] [CrossRef]
- El-Tantawy, S.A.; Salas, A.H.; Alharthi, M.R. On the dissipative extended Kawahara solitons and cnoidal waves in a collisional plasma: Novel analytical and numerical solutions. Phys. Fluids 2021, 33, 106101. [Google Scholar] [CrossRef]
- Gandarias, M.L.; Rosa, M.; Recio, E.; Anco, S. Conservation laws and symmetries of a generalized Kawahara equation. AIP Conf. Proc. 2017, 1836, 020072. [Google Scholar]
- Kingston, J.G.; Rogers, C. Reciprocal Bäcklund transformations of conservation laws. Phys. Lett. A 1982, 92, 261–264. [Google Scholar] [CrossRef]
- Sahadevan, R.; Bakkyaraj, T. Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations. J. Math. Anal. Appl. 2012, 393, 341–347. [Google Scholar] [CrossRef]
- Wang, G.W.; Liu, X.Q.; Zhang, Y.Y. Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2321–2326. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Shen, B.; He, M.; Guan, F.; Zhang, L. Symmetry Analysis and PT-Symmetric Extension of the Fifth-Order Korteweg-de Vries-Like Equation. Fractal Fract. 2022, 6, 468. https://doi.org/10.3390/fractalfract6090468
Wang G, Shen B, He M, Guan F, Zhang L. Symmetry Analysis and PT-Symmetric Extension of the Fifth-Order Korteweg-de Vries-Like Equation. Fractal and Fractional. 2022; 6(9):468. https://doi.org/10.3390/fractalfract6090468
Chicago/Turabian StyleWang, Gangwei, Bo Shen, Mengyue He, Fei Guan, and Lihua Zhang. 2022. "Symmetry Analysis and PT-Symmetric Extension of the Fifth-Order Korteweg-de Vries-Like Equation" Fractal and Fractional 6, no. 9: 468. https://doi.org/10.3390/fractalfract6090468
APA StyleWang, G., Shen, B., He, M., Guan, F., & Zhang, L. (2022). Symmetry Analysis and PT-Symmetric Extension of the Fifth-Order Korteweg-de Vries-Like Equation. Fractal and Fractional, 6(9), 468. https://doi.org/10.3390/fractalfract6090468