The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2)
Abstract
:1. Introduction
2. Preliminaries
3. Two Fractional Order Properties of Piecewise Function
4. The Equivalent Integral Equation of (1)
4.1. Some Defects in These Equivalent Integral Equations ((2), (3), (5), and (6))
4.2. The Correct Equivalent Integral Equation of (1)
5. Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agarwal, R.; Hristova, S.; O’Regan, D. A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal. 2016, 19, 290–318. [Google Scholar] [CrossRef]
- Ahmad, B.; Sivasundaram, S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 2009, 3, 251–258. [Google Scholar] [CrossRef]
- Wang, G.; Ahmad, B.; Zhang, L.; Nieto, J.J. Comments on the concept of existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 401–403. [Google Scholar] [CrossRef]
- Benchohra, M.; Hamani, S. The method of upper and lower solutions and impulsive fractional differential inclusions. Nonlinear Anal. Hybrid Syst. 2009, 3, 433–440. [Google Scholar] [CrossRef]
- Benchohra, M.; Berhoun, F. Impulsive fractional differential equations with variable times. Comput. Math. Appl. 2010, 59, 1245–1252. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Benchohra, M. Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order. Nonlinear Anal. Hybrid Syst. 2010, 4, 406–413. [Google Scholar] [CrossRef]
- Wang, J.R.; Li, X.; Wei, W. On the natural solution of an impulsive fractional differential equation of order q∈(1,2). Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4384–4394. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhou, Y.; Feckan, M. On recent developments in the theory of boundary value problems for impulsive fractional differential equations. Comput. Math. Appl. 2012, 64, 3008–3020. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y. On piecewise continuous solutions of higher order impulsive fractional differential equations and applications. Appl. Math. Comput. 2016, 287–288, 38–49. [Google Scholar] [CrossRef]
- Liu, Y. Survey and new results on boundary-value problems of singular fractional differential equations with impulse effects. Electron. J. Differ. Equ. 2016, 2016, 1–177. [Google Scholar] [CrossRef]
- Feckan, M.; Zhou, Y.; Wang, J.R. On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3050–3060. [Google Scholar] [CrossRef]
- Feckan, M.; Zhou, Y.; Wang, J.R. Response to “Comments on the concept of existence of solution for impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014;19:401-3.]”. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 4213–4215. [Google Scholar] [CrossRef]
- Wang, J.R.; Fekan, M.; Zhou, Y. A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2016, 19, 806–831. [Google Scholar] [CrossRef]
- Zhou, J.W.; Deng, Y.M.; Wang, Y.N. Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses. Appl. Math. Lett. 2020, 104, 106251. [Google Scholar] [CrossRef]
- Cao, J.Y.; Chen, L.Z.; Wang, Z.Q. A block-by-block method for the impulsive fractional ordinary differential equations. J. Appl. Anal. Comput. 2020, 10, 853–874. [Google Scholar] [CrossRef]
- Feng, L.M.; Han, Z.L. Oscillation behavior of solution of impulsive fractional differential equation. J. Appl. Anal. Comput. 2020, 10, 223–233. [Google Scholar] [CrossRef]
- Feng, L.M.; Sun, Y.B.; Han, Z.L. Philos-type oscillation criteria for impulsive fractional differential equations. J. Appl. Math. Comput. 2020, 62, 361–376. [Google Scholar] [CrossRef]
- Xu, M.R.; Sun, S.R.; Han, Z.L. Solvability for impulsive fractional Langevin equaiton. J. Appl. Anal. Comput. 2020, 10, 486–494. [Google Scholar]
- Liu, J.K.; Xu, W. An averaging result for impulsive fractional neutral stochastic differential equations. Appl. Math. Lett. 2021, 114, 106892. [Google Scholar] [CrossRef]
- Kucche, K.D.; Kharade, J.P. Analysis of impulsive ϕ-Hilfer fractional differential equations. Mediterr. J. Math. 2020, 17, 163. [Google Scholar] [CrossRef]
- Zhang, T.W.; Xiong, L.L. Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Appl. Math. Lett. 2020, 2020, 101. [Google Scholar] [CrossRef]
- Cheng, L.J.; Hu, L.Y.; Ren, Y. Perturbed impulsive neutral stochastic functional differential equations. Qual. Theory Dyn. Syst. 2021, 20, 27. [Google Scholar] [CrossRef]
- Heidarkhani, S.; Salari, A. Nontrivial solutions for impulsive fractional differential systems through variational methods. Math. Methods Appl. Sci. 2020, 43, 6529–6541. [Google Scholar] [CrossRef]
- Gou, H.D.; Li, Y.X. The method of lower and upper solutions for impulsive fractional evolution equations. Ann. Funct. Anal. 2020, 11, 350–369. [Google Scholar] [CrossRef]
- You, J.; Sun, S.R. On impulsive coupled hybrid fractional differential systems in Banach algebras. J. Appl. Math. Comput. 2020, 62, 189–205. [Google Scholar] [CrossRef]
- Gou, H.D.; Li, Y.X. A study on impulsive fractional hybrid evolution equations using sequence method. Comput. Appl. Math. 2020, 39, 225. [Google Scholar] [CrossRef]
- Ravichandran, C.; Logeswari, K.; Panda, S.K.; Nisar, K.S. On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions. Chaos Solitons Fractals 2020, 139, 110012. [Google Scholar] [CrossRef]
- Min, D.D.; Chen, F.Q. Existence of solutions for a fractional advection-dispersion equation with impulsive effects via variational approach. J. Appl. Anal. Comput. 2020, 10, 1005–1023. [Google Scholar] [CrossRef]
- Gou, H.D.; Li, Y.X. A study on impulsive Hilfer fractional evolution equations with nonlocal conditions. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 205–218. [Google Scholar] [CrossRef]
- Gou, H.D.; Li, Y.X. The method of lower and upper solutions for impulsive fractional evolution equations in Banach spaces. J. Korean Math. Soc. 2020, 57, 61–88. [Google Scholar]
- Agarwal, R.P.; Hristova, S.; O’Regan, D. Exact solutions of linear Riemann-Liouville fractional differential equations with impulses. Rocky Mt. J. Math. 2020, 50, 779–791. [Google Scholar] [CrossRef]
- Kucche, K.D.; Kharade, J.P.; Sousa, J.V.D.C. On the nonlinear impulsive Ψ-Hilfer fractional differential equations. Math. Model. Anal. 2020, 25, 642–660. [Google Scholar] [CrossRef]
- Zhang, X. On the concept of general solution for impulsive differential equations of fractional-order q∈(1,2). Appl. Math. Comput. 2015, 268, 103–120. [Google Scholar]
- Zhang, X.; Zhang, X.; Zhang, M. On the concept of general solution for impulsive differential equations of fractional order q∈(0,1). Appl. Math. Comput. 2014, 247, 72–89. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Benchohra, M.; Slimani, B.A. Existence results for differential equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys. 2008, 44, 1–21. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos; World Scientific: Singapore, 2012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, Z.; Yang, S.; Peng, Z.; He, Y.; Wei, L. The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2). Fractal Fract. 2023, 7, 37. https://doi.org/10.3390/fractalfract7010037
Zhang X, Liu Z, Yang S, Peng Z, He Y, Wei L. The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2). Fractal and Fractional. 2023; 7(1):37. https://doi.org/10.3390/fractalfract7010037
Chicago/Turabian StyleZhang, Xianmin, Zuohua Liu, Shixian Yang, Zuming Peng, Yali He, and Liran Wei. 2023. "The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2)" Fractal and Fractional 7, no. 1: 37. https://doi.org/10.3390/fractalfract7010037
APA StyleZhang, X., Liu, Z., Yang, S., Peng, Z., He, Y., & Wei, L. (2023). The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2). Fractal and Fractional, 7(1), 37. https://doi.org/10.3390/fractalfract7010037