Next Article in Journal
The First Integral of the Dissipative Nonlinear Schrödinger Equation with Nucci’s Direct Method and Explicit Wave Profile Formation
Next Article in Special Issue
Solvability of Mixed Problems for a Fourth-Order Equation with Involution and Fractional Derivative
Previous Article in Journal
Neutral-Type and Mixed Delays in Fractional-Order Neural Networks: Asymptotic Stability Analysis
Previous Article in Special Issue
Well-Posedness and Regularity Results for Fractional Wave Equations with Time-Dependent Coefficients
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2)

1
School of Mathematics and Statistics, Yangtze Normal University, Chongqing 408100, China
2
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
*
Author to whom correspondence should be addressed.
Fractal Fract. 2023, 7(1), 37; https://doi.org/10.3390/fractalfract7010037
Submission received: 3 October 2022 / Revised: 22 December 2022 / Accepted: 26 December 2022 / Published: 29 December 2022
(This article belongs to the Special Issue Recent Advances in Time/Space-Fractional Evolution Equations)

Abstract

:
For the impulsive fractional-order system (IFrOS) of order ϵ ( 1 , 2 ) , there have appeared some conflicting equivalent integral equations in existing studies. However, we find two fractional-order properties of piecewise function and use them to verify that these given equivalent integral equations have some defects to not be the equivalent integral equation of the IFrOS. For the IFrOS, its limit property shows the linear additivity of the impulsive effects. For the IFrOS, we use the limit analysis and the linear additivity of the impulsive effects to find its correct equivalent integral equation, which is a combination of some piecewise functions with two arbitrary constants; that is, the solution of the IFrOS is a general solution. Finally, a numerical example is given to show the equivalent integral equation and the non-uniqueness of the solution of the IFrOS.

1. Introduction

The subject of the impulsive fractional-order system (IFrOS) has been a research hotspot, and more than 800 articles can be searched on the Web of Science on the topic of impulsive fractional differential equations. For the IFrOS, its equivalent integral equation is an important tool to discuss some properties (such as the existence of solution, numerical solution, stability, and controllability).
However, in the mainstream research of the IFrOS, the fractional derivative in the IFrOS was independently considered from the whole interval or each subinterval respectively, which caused that there appeared two conflicting equivalent integral equations for the same IFrOS (For details, see [1,2,3,4,5,6,7,8,9,10,11,12,13]). Up to now, the two conflicting thoughts regarding the equivalent integral equation of the IFrOS are used to study numerical solution [14,15], oscillation behavior of solution [16,17], solvability [18], stability [19,20,21], asymptotic behavior of solution [22] and the existence of solution [23,24,25,26,27,28,29,30,31,32]. Moreover, by combining the two previous conflicting thoughts regarding the equivalent integral equation of IFrOS, the third equivalent integral equation of the same IFrOS was presented in [33,34].
However, recently, we found two fractional-order properties of piecewise function to uncover that the above three thoughts about the equivalent integral equation of IFrOS are incorrect. To support our viewpoint, we will give the fractional order properties of piecewise function and restudy the equivalent integral equation of the first IFrOS that was proposed in [35] by
t 0 C D t ϵ x ( t ) = h ( t , x ( t ) ) , t [ t 0 , T ] and t t k ( k = 1 , 2 , , N ) , x ( t k + ) x ( t k ) = I k ( x ( t k ) ) , k = 1 , 2 , , N , x ( t k + ) x ( t k ) = J k ( x ( t k ) ) , k = 1 , 2 , , N , x ( t 0 ) = x 0 , x ( t 0 ) = x 1 ,
here t 0 C D t ϵ ( ϵ ( 1 , 2 ) ) denotes the left-sided Caputo fractional derivative of order ϵ , h : [ t 0 , T ] × R R , < t 0 < t 1 < < t N < t N + 1 = T < + , I k : R R and J k : R R ( k = 1 , 2 , , N ).
Next three conflicting equivalent integral equations of (1) in existing papers will be given. The results in [1,2,3,4,5,6,35] show that the equivalent integral equation of (1) is
x ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , t 1 ] , x ( t k + ) + x ( t k + ) ( t t k ) + t k t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t ( t k , t k + 1 ] , k = 1 , 2 , , N ,
or equivalently,
x ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , t 1 ] , x 0 + x 1 ( t t 0 ) + i = 1 k I i ( x ( t i ) ) + i = 1 k J i ( x ( t i ) ) ( t t i ) + t k t ( t s ) ϵ 1 Γ ( ϵ ) h d s + i = 1 k t i 1 t i ( t i s ) ϵ 1 Γ ( ϵ ) h d s + i = 1 k ( t t i ) t i 1 t i ( t i s ) ϵ 2 Γ ( ϵ 1 ) h d s , t ( t k , t k + 1 ] , k = 1 , 2 , , N .
Remark 1.
For simplicity, let h d s = h ( s , x ( s ) ) d s of all integrals in the whole paper. However, by Lemma 1, (2) (or (3)) is actually the equivalent integral equation of the following hybrid system
t i C D t ϵ x ( t ) = h ( t , x ( t ) ) , t ( t i , t i + 1 ] , i = 0 , 1 , , N , x ( t k + ) x ( t k ) = I k ( x ( t k ) ) , k = 1 , 2 , , N , x ( t k + ) x ( t k ) = J k ( x ( t k ) ) , k = 1 , 2 , , N , x ( t 0 ) = x 0 , x ( t 0 ) = x 1 .
On the other hand, the results in [7,8,9,10,11,12,13] show that the equivalent integral equation of (1) is
x ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , t 1 ] , x 0 + x 1 ( t t 0 ) + i = 1 k I i ( x ( t i ) ) + i = 1 k J i ( x ( t i ) ) ( t t i ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t ( t k , t k + 1 ] , k = 1 , 2 , , N .
Moreover, the author in [33] thought that the equivalent integral equation of (1) is an integral equation with two arbitrary constants:
x ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , t 1 ] , x 0 + x 1 ( t t 0 ) + i = 1 k I i ( x ( t i ) ) + i = 1 k J i ( x ( t i ) ) ( t t i ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s + i = 1 k ξ I i ( x ( t i ) ) + η J i ( x ( t i ) ) t 0 t i ( t i s ) ϵ 1 Γ ( ϵ ) h d s + t i t ( t s ) ϵ 1 Γ ( ϵ ) h d s t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s + ( t t i ) t 0 t i ( t i s ) ϵ 2 Γ ( ϵ 1 ) h d s , t ( t k , t k + 1 ] , k = 1 , 2 , , N , here ξ and η are two arbitrary constants .
We will illuminate that four equations ((2), (3), (5), and (6)) are not the equivalent integral equation of (1) and find the correct equivalent integral equation of (1).
The rest of this paper is organized as follows. In Section 2, some preliminaries are presented. In Section 3, two fractional-order properties of piecewise function are given. In Section 4, we verify that four equations ((2), (3), (5), and (6)) are not the equivalent integral equation of (1) and search the correct equivalent integral equation of (1) by using the fractional order properties of piecewise function and some limit properties of (1).

2. Preliminaries

We can find the basic definitions and conclusions of fractional calculus in the monographs [36,37,38], and we briefly review several definitions and properties of fractional derivatives in this section.
Definition 1.
Let x L p ( t 0 , T ) ( p 1 ). The left-sided Riemann–Liouville fractional integral t 0 R L I t β x ( β > 0 ) is defined as
t 0 R L I t β x ( t ) = t 0 t ( t s ) β 1 Γ ( β ) x ( s ) d s , t > t 0 , where Γ ( · ) is the gamma function .
Definition 2.
The left-sided Riemann–Liouville fractional derivative t 0 R L D t α x ( α ( n 1 , n ) and n N + ) is defined as
t 0 R L D t α x ( t ) = d n d t n t 0 t ( t s ) n α 1 Γ ( n α ) x ( s ) d s , t > t 0 .
Definition 3.
Let x C n [ t 0 , T ] . The left-sided Caputo fractional derivative t 0 C D t α x ( α ( n 1 , n ) and n N + ) is defined by
t 0 C D t α x ( t ) = t 0 t ( t s ) n α 1 Γ ( n α ) x ( n ) ( s ) d s , t > t 0 .
Lemma 1.
If h A C [ t 0 , T ] or h C 1 [ t 0 , T ] , then the initial value problem
t 0 C D t α x ( t ) = h ( t , x ( t ) ) , α ( n 1 , n ) and t [ t 0 , T ] , x ( j ) ( t 0 ) = b j , j = 0 , 1 , 2 , , n 1 ,
is equivalent to the following nonlinear Volterra integral equation of the second kind,
x ( t ) = j = 0 n 1 b j j ! ( t t 0 ) j + t 0 t ( t s ) α 1 Γ ( α ) h ( s , x ( s ) ) d s for t [ t 0 , T ] .

3. Two Fractional Order Properties of Piecewise Function

For the piecewise function
f ( t ) = f 0 ( t ) , t [ t 0 , t 1 ] , f 1 ( t ) , t ( t 1 , t 2 ] , f N ( t ) , t ( t N , T ] , = f 0 ( t ) , t [ t 0 , t 1 ] , 0 , t ( t 1 , T ] , + 0 , t [ t 0 , t 1 ] , f 1 ( t ) , t ( t 1 , t 2 ] , 0 , t ( t 2 , T ] , + + 0 , t [ t 0 , t N ] , f N ( t ) , t ( t N , T ] ,
its fractional derivative and fractional integral have respectively two expressions.
Property 1.
Let ϵ ( 1 , 2 ) and f i ( t ) C 2 [ t i , t i + 1 ] ( i = 0 , 1 , , N ), then the left-sided Caputo fractional derivative of (9) can be expressed by
t 0 C D t ϵ f ( t ) t [ t 0 , t 1 ] = t 0 t ( t s ) 1 ϵ f 0 ( s ) Γ ( 2 ϵ ) d s for t [ t 0 , t 1 ] , t 0 C D t ϵ f ( t ) t ( t k , t k + 1 ] = t 0 t ( t s ) 1 ϵ f ( s ) Γ ( 2 ϵ ) d s for t ( t k , t k + 1 ] ( k = 1 , 2 , , N ) = t 0 t 1 ( t s ) 1 ϵ f 0 ( s ) Γ ( 2 ϵ ) d s + t 1 t 2 ( t s ) 1 ϵ f 1 ( s ) Γ ( 2 ϵ ) d s + + t k t ( t s ) 1 ϵ f k ( s ) Γ ( 2 ϵ ) d s ,
and
t 0 C D t ϵ f ( t ) = t 0 C D t ϵ f 0 ( t ) , t [ t 0 , t 1 ] , t 0 t 1 ( t s ) 1 ϵ f 0 ( s ) Γ ( 2 ϵ ) d s , t ( t 1 , T ] , + 0 , t [ t 0 , t 1 ] , t 1 C D t ϵ f 1 ( t ) , t ( t 1 , t 2 ] , t 1 t 2 ( t s ) 1 ϵ f 1 ( s ) Γ ( 2 ϵ ) d s , t ( t 2 , T ] , + + 0 , t [ t 0 , t N 1 ] , t N 1 C D t ϵ f N 1 ( t ) , t ( t N 1 , t N ] , t N 1 t N ( t s ) 1 ϵ f N 1 ( s ) Γ ( 2 ϵ ) d s , t ( t N , T ] , + 0 , t [ t 0 , t N ] , t N C D t ϵ f N ( t ) , t ( t N , T ] .
Property 2.
Let ϵ ( 1 , 2 ) and f i ( t ) C [ t i , t i + 1 ] ( i = 0 , 1 , , N ), then the left-sided Riemann–Liouville fractional integral of (9) can be expressed by
t 0 R L I t ϵ f ( t ) t [ t 0 , t 1 ] = t 0 t ( t s ) ϵ 1 f 0 ( s ) Γ ( ϵ ) d s for t [ t 0 , t 1 ] , t 0 R L I t ϵ f ( t ) t ( t k , t k + 1 ] = t 0 t ( t s ) ϵ 1 f ( s ) Γ ( ϵ ) d s for t ( t k , t k + 1 ] ( k = 1 , 2 , , N ) = t 0 t 1 ( t s ) ϵ 1 f 0 ( s ) Γ ( ϵ ) d s + t 1 t 2 ( t s ) ϵ 1 f 1 ( s ) Γ ( ϵ ) d s + + t k t ( t s ) ϵ 1 f k ( s ) Γ ( ϵ ) d s ,
and
t 0 R L I t ϵ f ( t ) = t 0 R L I t ϵ f 0 ( t ) , t [ t 0 , t 1 ] , t 0 t 1 ( t s ) ϵ 1 f 0 ( s ) Γ ( ϵ ) d s , t ( t 1 , T ] , + 0 , t [ t 0 , t 1 ] , t 1 R L I t ϵ f 1 ( t ) , t ( t 1 , t 2 ] , t 1 t 2 ( t s ) ϵ 1 f 1 ( s ) Γ ( ϵ ) d s , t ( t 2 , T ] , + + 0 , t [ t 0 , t N 1 ] , t N 1 R L I t ϵ f N 1 ( t ) , t ( t N 1 , t N ] , t N 1 t N ( t s ) ϵ 1 f N 1 ( s ) Γ ( ϵ ) d s , t ( t N , T ] , + 0 , t [ t 0 , t N ] , t N R L I t ϵ f N ( t ) , t ( t N , T ] .

4. The Equivalent Integral Equation of (1)

To discuss the equivalent integral equation of (1), we give some limit properties of (1):
lim J k ( x ( t k ) ) 0 for all k { 1 , 2 , , N } system ( 1 ) = t 0 C D t ϵ x ( t ) = h ( t , x ( t ) ) , t [ t 0 , T ] and t t k ( k = 1 , 2 , , N ) , x ( t k + ) x ( t k ) = I k ( x ( t k ) ) , k = 1 , 2 , , N , x ( t 0 ) = x 0 , x ( t 0 ) = x 1 ,
lim I k ( x ( t k ) ) 0 for all k { 1 , , N } system ( 1 ) = t 0 C D t ϵ x ( t ) = h ( t , x ( t ) ) , t [ t 0 , T ] and t t k ( k = 1 , 2 , , N ) , x ( t k + ) x ( t k ) = J k ( x ( t k ) ) , k = 1 , 2 , , N , x ( t 0 ) = x 0 , x ( t 0 ) = x 1 ,
lim I k ( x ( t k ) ) 0 for all k { 1 , , N } J k ( x ( t k ) ) 0 for all k { 1 , , N } system ( 1 ) = t 0 C D t ϵ x ( t ) = h ( t , x ( t ) ) , t [ t 0 , T ] , x ( t 0 ) = x 0 , x ( t 0 ) = x 1 , x ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , T ] ,
lim t k t j for all k { 1 , 2 , , N } ( here j { 1 , 2 , , N } ) system ( 1 ) = t 0 C D t ϵ x ( t ) = h ( t , x ( t ) ) , t [ t 0 , T ] and t t j , x ( t j + ) x ( t j ) = i = 1 N I i ( x ( t j ) ) and x ( t j + ) x ( t j ) = i = 1 N J i ( x ( t j ) ) , x ( t 0 ) = x 0 , x ( t 0 ) = x 1 .
Moreover, the limit property (17) shows the linear additivity of the impulsive effects in (1).

4.1. Some Defects in These Equivalent Integral Equations ((2), (3), (5), and (6))

In this subsection, we will verify that four equations ((2), (3), (5), and (6)) are not the equivalent integral equation of (1). We use (10) to compute the fractional derivative of (2):
t 0 C D t ϵ x ( t ) t [ t 0 , t 1 ] = h ( t , x ( t ) ) for t [ t 0 , t 1 ] , t 0 C D t ϵ x ( t ) t ( t k , t k + 1 ] = t 0 t ( t r ) 1 ϵ Γ ( 2 ϵ ) x ( r ) d r for t ( t k , t k + 1 ] ( k = 1 , 2 , , N ) = t 0 t 1 ( t r ) 1 ϵ Γ ( 2 ϵ ) x 0 + x 1 ( r t 0 ) + t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r + + t k t ( t r ) 1 ϵ Γ ( 2 ϵ ) x ( t k + ) + x ( t k + ) ( r t k ) + t k r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r = t 0 t 1 ( t r ) 1 ϵ Γ ( 2 ϵ ) t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r + + t k t ( t r ) 1 ϵ Γ ( 2 ϵ ) t k r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r h ( t , x ( t ) ) for t ( t k , t k + 1 ] ( k = 1 , 2 , , N ) .
Therefore, (2) does not satisfy the condition of the fractional derivative of (1). Moreover, with similarity to computation of (18), both of (3) and (6) do not satisfy the condition of the fractional derivative of (1). Thus, none of (2), (3), and (6) is the equivalent integral equation of (1).
Moreover, it is obvious that (5) satisfies the condition of the fractional derivative of (1) and the fractional derivative of (5) is
t 0 C D t ϵ x ( t ) t [ t 0 , t 1 ] = h ( t , x ( t ) ) for t [ t 0 , t 1 ] , t 0 C D t ϵ x ( t ) t ( t k , t k + 1 ] = t 0 t ( t r ) 1 ϵ Γ ( 2 ϵ ) x ( r ) d r for t ( t k , t k + 1 ] ( k = 1 , 2 , , N ) = t 0 t 1 ( t r ) 1 ϵ Γ ( 2 ϵ ) x 0 + x 1 ( r t 0 ) + t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r + + t k t ( t r ) 1 ϵ Γ ( 2 ϵ ) x 0 + x 1 ( r t 0 ) + i = 1 k I i ( x ( t i ) ) + i = 1 k J i ( x ( t i ) ) ( r t i ) + t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r = t 0 t 1 ( t r ) 1 ϵ Γ ( 2 ϵ ) t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r + + t k t ( t r ) 1 ϵ Γ ( 2 ϵ ) t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r = t 0 t ( t r ) 1 ϵ Γ ( 2 ϵ ) t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r = h ( t , x ( t ) ) for t ( t k , t k + 1 ] ( k = 1 , 2 , , N ) .
Next, we will show that (5) is not the unique piecewise function to satisfy the condition of the fractional derivative in (1) and illuminate that (5) is not the equivalent integral solution of (1).
By using (2) and Properties 1 and 2, we can reconstruct a new piecewise function:
x ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , t 1 ] , 0 , t ( t 1 , T ] , + k = 1 N 1 0 , t [ t 0 , t k ] , x ( t k + ) + x ( t k + ) ( t t k ) + t k t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t ( t k , t k + 1 ] , 0 , t ( t k + 1 , T ] , + 0 , t [ t 0 , t N ] , x ( t N + ) + x ( t N + ) ( t t N ) + t N t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t ( t N , T ] , i = 0 N 1 0 , t [ t 0 , t i + 1 ] , t i + 1 t ( t u ) ϵ 1 Γ ( ϵ ) t i t i + 1 ( u r ) 1 ϵ Γ ( 2 ϵ ) t i r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r d u , t ( t i + 1 , T ] .
In addition, we compute the fractional derivative of (20):
t 0 C D t ϵ x ( t ) = h ( t , x ( t ) ) , t [ t 0 , t 1 ] , t 0 t 1 ( t r ) 1 ϵ Γ ( 2 ϵ ) t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r , t ( t 1 , T ] , + k = 1 N 1 0 , t [ t 0 , t k ] , h ( t , x ( t ) ) , t ( t k , t k + 1 ] , t k t k + 1 ( t r ) 1 ϵ Γ ( 2 ϵ ) t k r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r , t ( t k + 1 , T ] , + 0 , t [ t 0 , t N ] , h ( t , x ( t ) ) , t ( t N , T ] , i = 0 N 1 0 , t [ t 0 , t i + 1 ] , t i t i + 1 ( t r ) 1 ϵ Γ ( 2 ϵ ) t i r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r , t ( t i + 1 , T ] , = h ( t , x ( t ) ) , t [ t 0 , t 1 ] k = 1 N ( t k , t k + 1 ] .
Therefore, both (5) and (20) satisfy these conditions (including fractional derivative, impulses, and initial value) in (1).
Thus, (5) is only a special case of the equivalent integral equation of (1) because it does not contain the important part t k t ( t s ) ϵ 1 Γ ( ϵ ) h d s which can satisfy t 0 C D t ϵ x ( t ) = h ( t , x ( t ) ) as t ( t k , t k + 1 ] ( k = 1 , 2 , , N ). Moreover, (20) does not satisfy the limit property (16) to be not the equivalent integral equation of (1).
By the above discussion, none of the four equations ((2), (3), (5), and (6)) is the equivalent integral equation of (1).

4.2. The Correct Equivalent Integral Equation of (1)

In this subsection, we will use Properties 1 and 2 and (16) and (17) to search for the correct equivalent integral equation of (1) and give the equivalent integral equations of (14) and (15).
Define the space of function
I C ( [ t 0 , T ] , R ) : = { x : [ t 0 , T ] R , x C 2 [ t 0 , t 1 ] k = 1 N ( t k , t k + 1 ] and x ( t k ) = lim t t k x ( t ) = x ( t k ) < , x ( t k + ) = lim t t k x ( t ) < } .
Theorem 1.
Let ξ and η be two arbitrary constants, and let function h ( · , x ( · ) ) satisfy
| h ( t , y ) h ( s , z ) | L | t s | + M | y z | for s , t [ t 0 , T ] and y , z R
where L and M are two positive constants.
Let x ( t ) I C ( [ t 0 , T ] , R ) , then x ( t ) satisfies (1) iff x ( t ) satisfies
x ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , t 1 ] , x 0 + x 1 ( t t 0 ) + i = 1 k I i ( x ( t i ) ) + i = 1 k J i ( x ( t i ) ) ( t t i ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s + i = 1 k ξ I i ( x ( t i ) ) + η J i ( x ( t i ) ) t 0 t i ( t i s ) ϵ 1 Γ ( ϵ ) h d s + t i t ( t s ) ϵ 1 Γ ( ϵ ) h d s t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s t i t ( t u ) ϵ 1 Γ ( ϵ ) t 0 t i ( u r ) 1 ϵ Γ ( 2 ϵ ) t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r d u + ( t t i ) t 0 t i ( t i s ) ϵ 2 Γ ( ϵ 1 ) h d s , t ( t k , t k + 1 ] , k = 1 , 2 , , N .
Remark 2.
To verify that (22) satisfies the condition of the fractional derivative in (1), we transform (22) into
x ( t ) = ϕ ( t ) , t [ t 0 , t 1 ] , ϕ ( t ) , t ( t k , t k + 1 ] , k = 1 , , N , + k = 1 N 0 , t [ t 0 , t k ] , I k ( x ( t k ) ) + J k ( x ( t k ) ) ( t t k ) , t ( t k , T ] , + ξ I 1 ( x ( t 1 ) ) + η J 1 ( x ( t 1 ) ) 0 , t [ t 0 , t 1 ] , Φ 1 ( t ) ϕ ( t ) t 1 t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t 1 ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t 1 , T ] , + + + ξ I N ( x ( t N ) ) + η J N ( x ( t N ) ) 0 , t [ t 0 , t N ] , Φ N ( t ) ϕ ( t ) t N t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t N ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t N , T ] ,
where
ϕ ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s ,
and
Φ k ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t k ( t k s ) ϵ 1 Γ ( ϵ ) h d s + t k t ( t s ) ϵ 1 Γ ( ϵ ) h d s + ( t t k ) t 0 t k ( t k s ) ϵ 2 Γ ( ϵ 1 ) h d s , where k = 1 , 2 , , N .
Proof. 
‘Sufficiency’. Because of
t 0 C D t ϵ 0 , t [ t 0 , t i ] , Φ i ( t ) ϕ ( t ) t i t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t i ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t i , T ] , = 0 , t [ t 0 , t i ] , h ( t , x ( t ) ) t i t ( t s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s t 0 t i ( t s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s , t ( t i , T ] , = 0 , where i = 1 , 2 , , N ,
the fractional derivative of (23) satisfies
t 0 C D t ϵ x ( t ) = h ( t , x ( t ) ) , t [ t 0 , t 1 ] k = 1 N ( t k , t k + 1 ] .
Thus, (23) satisfies the condition of the fractional derivative in (1). Moreover, the first order derivative of (23) is
x ( t ) = x 1 + t 0 t ( t s ) ϵ 2 Γ ( ϵ 1 ) h d s , t [ t 0 , t 1 ] , x 1 + t 0 t ( t s ) ϵ 2 Γ ( ϵ 1 ) h d s , t ( t k , t k + 1 ] , k = 1 , , N , + k = 1 N 0 , t [ t 0 , t k ] , J k ( x ( t k ) ) , t ( t k , T ] , + ξ I 1 ( x ( t 1 ) ) + η J 1 ( x ( t 1 ) ) × 0 , t [ t 0 , t 1 ] , t 0 t 1 ( t 1 s ) ϵ 2 Γ ( ϵ 1 ) h d s + t 1 t ( t s ) ϵ 2 Γ ( ϵ 1 ) h d s t 0 t ( t s ) ϵ 2 Γ ( ϵ 1 ) h d s t 1 t ( t r ) ϵ 2 Γ ( ϵ 1 ) t 0 t 1 ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t 1 , T ] , + + ξ I N ( x ( t N ) ) + η J N ( x ( t N ) ) × 0 , t [ t 0 , t N ] , t 0 t N ( t N s ) ϵ 2 Γ ( ϵ 1 ) h d s + t N t ( t s ) ϵ 2 Γ ( ϵ 1 ) h d s t 0 t ( t s ) ϵ 2 Γ ( ϵ 1 ) h d s t N t ( t r ) ϵ 2 Γ ( ϵ 1 ) t 0 t N ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t N , T ] .
Therefore, it easily verify that (23) satisfies x ( t 0 ) = x 0 , x ( t 0 ) = x 1 , x ( t k + ) x ( t k ) = I k ( x ( t k ) ) and x ( t k + ) x ( t k ) = J k ( x ( t k ) ) ( k = 1 , 2 , , N ) and these limit properties (14)–(17). Then (23) satisfies all conditions of (1).
’Necessity’. For i { 1 , 2 , , N } , consider the special case of (1):
lim I k ( x ( t k ) ) 0 and J k ( x ( t k ) ) 0 for all k { 1 , 2 , , N } / i system ( 1 ) = t 0 C D t ϵ x ( t ) = h ( t , x ( t ) ) , t [ t 0 , T ] and t t i , x ( t i + ) x ( t i ) = I i ( x ( t i ) ) , x ( t i + ) x ( t i ) = J i ( x ( t i ) ) , x ( t 0 ) = x 0 , x ( t 0 ) = x 1 .
Next, we search the solution of (29). When t [ t 0 , t i ] , the solution of (29) satisfies
x ( t ) = ϕ ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , t i ] ,
with x ( t i ) = x 0 + x 1 ( t i t 0 ) + t 0 t i ( t i s ) ϵ 1 Γ ( ϵ ) h d s and x ( t i ) = x 1 + t 0 t i ( t i s ) ϵ 2 Γ ( ϵ 1 ) h d s . Then, we use Properties 1 and 2 to construct the approximate solution of (29):
x ˜ ( t ) = ϕ ( t ) , t [ t 0 , t i ] , 0 , t ( t i , T ] , + 0 , t [ t 0 , t i ] , x ( t i + ) + x ( t i + ) ( t t i ) + t i t ( t s ) ϵ 1 Γ ( ϵ ) h d s t i t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t i ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t i , T ] , = ϕ ( t ) , t [ t 0 , t i ] , 0 , t ( t i , T ] , + 0 , t [ t 0 , t i ] , Φ i ( t ) + I i ( x ( t i ) ) + J i ( x ( t i ) ) ( t t i ) t i t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t i ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t i , T ] ,
with the error e ( t ) = 0 , t [ t 0 , t i ] , x ( t ) x ˜ ( t ) , t [ t i , T ] , , here x ( t ) represents the exact solution of (29).
Consider the special case of e ( t ) :
lim I i ( x ( t i ) ) 0 J i ( x ( t i ) ) 0 e ( t ) = lim I i ( x ( t i ) ) 0 J i ( x ( t i ) ) 0 x ( t ) lim I i ( x ( t i ) ) 0 J i ( x ( t i ) ) 0 x ˜ ( t ) = 0 , t [ t 0 , t i ] , ϕ ( t ) Φ i ( t ) + t i t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t i ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t i , T ] ,
and assume
e ( t ) = g I i ( x ( t i ) ) , J i ( x ( t i ) ) lim I i ( x ( t i ) ) 0 J i ( x ( t i ) ) 0 e ( t ) = g I i ( x ( t i ) ) , J i ( x ( t i ) ) 0 , t [ t 0 , t i ] , ϕ ( t ) Φ i ( t ) + t i t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t i ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t i , T ] ,
where g ( · , · ) is an undetermined function with g ( 0 , 0 ) = 1 . Thus, by (31) and (33), the solution of (29) is
x ( t ) = x ˜ ( t ) + e ( t ) , t [ t 0 , T ] = ϕ ( t ) , t [ t 0 , t i ] , ϕ ( t ) , t ( t i , T ] , + 0 , t [ t 0 , t i ] , I i ( x ( t i ) ) + J i ( x ( t i ) ) ( t t i ) , t ( t i , T ] , + 1 g I i ( x ( t i ) ) , J i ( x ( t i ) ) × 0 , t [ t 0 , t i ] , Φ i ( t ) ϕ ( t ) t i t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t i ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t i , T ] .
Because (29) is the special case of (1), (34) is a part of the solution of (1). Moreover, the limit property (17) shows the linear additivity of the impulsive effects in (1). Thus, we combine (34) and the particular solution (5) to obtain the solution of (1):
x ( t ) = ϕ ( t ) , t [ t 0 , t 1 ] , ϕ ( t ) , t ( t k , t k + 1 ] , k = 1 , , N , + k = 1 N 0 , t [ t 0 , t k ] , I k ( x ( t k ) ) + J k ( x ( t k ) ) ( t t k ) , t ( t k , T ] , + 1 g I 1 ( x ( t 1 ) ) , J 1 ( x ( t 1 ) ) × 0 , t [ t 0 , t 1 ] , Φ 1 ( t ) ϕ ( t ) t 1 t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t 1 ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t 1 , T ] , + + 1 g I N ( x ( t N ) ) , J N ( x ( t N ) ) × 0 , t [ t 0 , t N ] , Φ N ( t ) ϕ ( t ) t N t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t N ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t N , T ] .
On the other hand, (35) need satisfy (17) such that
1 g I i ( x ( t i ) ) , J i ( x ( t i ) ) + 1 g I j ( x ( t j ) ) , J j ( x ( t j ) ) = 1 g I i ( x ( t i ) ) + I j ( x ( t j ) ) , J i ( x ( t i ) ) + J j ( x ( t j ) )
where I i ( x ( t i ) ) , I j ( x ( t j ) ) , J i ( x ( t i ) ) , J j ( x ( t j ) ) R . Thus
1 g I i ( x ( t i ) ) , J i ( x ( t i ) ) = ξ I i ( x ( t i ) ) + η J i ( x ( t i ) ) here ξ and η are two arbitrary reals ,
then (35) is (23). The proof is completed. □
Next, by (14), (15), and Theorem 1, we can draw the following conclusions.
Corollary 1.
Let ξ be an arbitrary constant, and let function h ( · , x ( · ) ) satisfy
| h ( t , y ) h ( s , z ) | L | t s | + M | y z | for s , t [ t 0 , T ] and y , z R
where L and M are two positive constants.
Let x ( t ) I C ( [ t 0 , T ] , R ) , then x ( t ) satisfies (14) iff x ( t ) satisfies
x ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , t 1 ] , x 0 + x 1 ( t t 0 ) + i = 1 k I i ( x ( t i ) ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s + ξ i = 1 k I i ( x ( t i ) ) t 0 t i ( t i s ) ϵ 1 Γ ( ϵ ) h d s + t i t ( t s ) ϵ 1 Γ ( ϵ ) h d s t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s t i t ( t u ) ϵ 1 Γ ( ϵ ) t 0 t i ( u r ) 1 ϵ Γ ( 2 ϵ ) t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r d u + ( t t i ) t 0 t i ( t i s ) ϵ 2 Γ ( ϵ 1 ) h d s , t ( t k , t k + 1 ] , k = 1 , 2 , , N .
Remark 3.(38) can be rewritten as
x ( t ) = ϕ ( t ) , t [ t 0 , t 1 ] , ϕ ( t ) , t ( t k , t k + 1 ] , k = 1 , 2 , , N , + k = 1 N 0 , t [ t 0 , t k ] , I k ( x ( t k ) ) , t ( t k , T ] , + ξ I 1 ( x ( t 1 ) ) 0 , t [ t 0 , t 1 ] , Φ 1 ( t ) ϕ ( t ) t 1 t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t 1 ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t 1 , T ] , + + ξ I N ( x ( t N ) ) 0 , t [ t 0 , t N ] , Φ N ( t ) ϕ ( t ) t N t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t N ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t N , T ] .
Corollary 2.
Let η be an arbitrary constant, and let function h ( · , x ( · ) ) satisfy
| h ( t , y ) h ( s , z ) | L | t s | + M | y z | for s , t [ t 0 , T ] and y , z R
where L and M are two positive constants.
Let x ( t ) I C ( [ t 0 , T ] , R ) , then x ( t ) satisfies (15) iff x ( t ) satisfies
x ( t ) = x 0 + x 1 ( t t 0 ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s , t [ t 0 , t 1 ] , x 0 + x 1 ( t t 0 ) + i = 1 k J i ( x ( t i ) ) ( t t i ) + t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s + η i = 1 k J i ( x ( t i ) ) t 0 t i ( t i s ) ϵ 1 Γ ( ϵ ) h d s + t i t ( t s ) ϵ 1 Γ ( ϵ ) h d s t 0 t ( t s ) ϵ 1 Γ ( ϵ ) h d s t i t ( t u ) ϵ 1 Γ ( ϵ ) t 0 t i ( u r ) 1 ϵ Γ ( 2 ϵ ) t 0 r ( r s ) ϵ 1 Γ ( ϵ ) h d s d r d u + ( t t i ) t 0 t i ( t i s ) ϵ 2 Γ ( ϵ 1 ) h d s , t ( t k , t k + 1 ] , k = 1 , 2 , , N .
Remark 4.(40) can be rewritten as
x ( t ) = ϕ ( t ) , t [ t 0 , t 1 ] , ϕ ( t ) , t ( t k , t k + 1 ] , k = 1 , 2 , , N , + k = 1 N 0 , t [ t 0 , t k ] , J k ( x ( t k ) ) ( t t k ) , t ( t k , T ] , + η J 1 ( x ( t 1 ) ) 0 , t [ t 0 , t 1 ] , Φ 1 ( t ) ϕ ( t ) t 1 t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t 1 ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t 1 , T ] , + + η J N ( x ( t N ) ) 0 , t [ t 0 , t N ] , Φ N ( t ) ϕ ( t ) t N t ( t r ) ϵ 1 Γ ( ϵ ) t 0 t N ( r s ) 1 ϵ ϕ ( s ) Γ ( 2 ϵ ) d s d r , t ( t N , T ] .

5. Applications

In this section, we use Theorem 1 to consider the equivalent integral equation of an IFrOS and draw three solution trajectories of the IFrOS by the numerical simulation to show the non-uniqueness of the solution of the IFrOS.
Example 1.
Consider the following IFrOS
0 C D t 3 2 x ( t ) = t , t [ 0 , 2 ] and t 1 , x ( 1 + ) x ( 1 ) = 1 , x ( 1 + ) x ( 1 ) = 1 , x ( 0 ) = 1 , x ( 0 ) = 1 ,
By Theorem 1, the equivalent integral equation of (42) is
x ( t ) = 1 + t + 1 Γ ( 7 2 ) t 5 2 , t [ 0 , 1 ] , 1 + 2 t + 1 Γ ( 7 2 ) t 5 2 + ξ + η 1 Γ ( 7 2 ) + 1 Γ ( 5 2 ) ( t 1 ) 3 2 + 1 Γ ( 7 2 ) ( t 1 ) 5 2 1 Γ ( 7 2 ) t 5 2 + t 1 Γ ( 5 2 ) 1 t ( t r ) 1 2 Γ ( 3 2 ) 0 1 ( r s ) 1 2 s 1 2 Γ ( 1 2 ) Γ ( 3 2 ) d s d r , t ( 1 , 2 ] ,
where ξ and η are two arbitrary reals. Moreover we can transform (43) into
x ( t ) = 1 + t + 1 Γ ( 7 2 ) t 5 2 , t [ 0 , 1 ] , 1 + t + 1 Γ ( 7 2 ) t 5 2 , t ( 1 , 2 ] , + 0 , t [ 0 , 1 ] , t , t ( 1 , 2 ] , + ξ + η 0 , t [ 0 , 1 ] , 1 Γ ( 7 2 ) + 1 Γ ( 5 2 ) ( t 1 ) 3 2 + 1 Γ ( 7 2 ) ( t 1 ) 5 2 1 Γ ( 7 2 ) t 5 2 + t 1 Γ ( 5 2 ) 1 t ( t r ) 1 2 Γ ( 3 2 ) 0 1 ( r s ) 1 2 s 1 2 Γ ( 1 2 ) Γ ( 3 2 ) d s d r , t ( 1 , 2 ] .
We compute the first order derivative and the fractional derivative of (44):
x ( t ) = 1 + 1 Γ ( 5 2 ) t 3 2 , t [ 0 , 1 ] , 1 + 1 Γ ( 5 2 ) t 3 2 , t ( 1 , 2 ] , + 0 , t [ 0 , 1 ] , 1 , t ( 1 , 2 ] , + ξ + η 0 , t [ 0 , 1 ] , 1 Γ ( 5 2 ) + 1 Γ ( 3 2 ) ( t 1 ) 1 2 + 1 Γ ( 5 2 ) ( t 1 ) 3 2 1 Γ ( 5 2 ) t 3 2 1 t ( t r ) 1 2 Γ ( 1 2 ) 0 1 ( r s ) 1 2 s 1 2 Γ ( 1 2 ) Γ ( 3 2 ) d s d r , t ( 1 , 2 ] .
and
0 C D t 3 2 x ( t ) = t , t [ 0 , 1 ] , t , t ( 1 , 2 ] , + 0 , t [ 0 , 1 ] , 0 , t ( 1 , 2 ] , + ξ + η 0 , t [ 0 , 1 ] , 1 t ( t s ) 1 2 Γ ( 1 2 ) 1 Γ ( 1 2 ) ( s 1 ) 1 2 + 1 Γ ( 3 2 ) ( s 1 ) 1 2 1 Γ ( 3 2 ) s 1 2 d s 0 1 ( t s ) 1 2 s 1 2 Γ ( 1 2 ) Γ ( 3 2 ) d s , t ( 1 , 2 ] . = t , t [ 0 , 1 ] , t , t ( 1 , 2 ] , + ξ + η 0 , t [ 0 , 1 ] , t 1 t ( t s ) 1 2 s 1 2 Γ ( 1 2 ) Γ ( 3 2 ) d s 0 1 ( t s ) 1 2 s 1 2 Γ ( 1 2 ) Γ ( 3 2 ) d s , t ( 1 , 2 ] . = t , t [ 0 , 1 ] , t , t ( 1 , 2 ] .
By (45) and (46), (44) satisfies the condition of the fractional derivative, the impulsive conditions, and the initial value in (42), that is, (44) is the general solution of (42). Moreover, three curves of solution of (42) in Figure 1 are drawn by using equation (43) with ξ + η = 0 , 10 , 10 , respectively, and the numerical algorithm is with the step size l = 0.01 .

6. Conclusions

We find that the fractional derivative and the fractional integral of the piecewise function have two different expressions, respectively, and then we use the fractional order properties of the piecewise function to verify that four equations ((2), (3), (5), and (6)) are not the equivalent integral equation of (1). Next, we combine the fractional order properties of piecewise function, some limit properties, the particular solution (5), and the linear additivity of the impulsive effects in (1) to find that the correct equivalent integral equation of (1) is a combination of two functions ( ϕ ( t ) and Φ k ( t ) ) with two arbitrary constants to uncover the non-uniqueness of the solution of (1).

Author Contributions

Methodology, X.Z. and Z.L.; Validation, X.Z., Z.L. and S.Y.; Formal analysis, X.Z., S.Y., Z.P., Y.H. and L.W.; Data curation, X.Z., Z.L. and S.Y.; Writing—original draft, X.Z., Z.P. and L.W.; Writing—review & editing, Z.L., S.Y. and Y.H.; Supervision, X.Z. and Z.L. All authors have read and agreed to the published version of the manuscript.

Funding

The work described in this paper is financially supported by the National Natural Science Foundation of China (Grant No. 21636004, 22078030), and the Natural Science Foundation of Chongqing (No. CSTB2022NSCQ-MSX1133).

Data Availability Statement

All data are available in this paper.

Conflicts of Interest

The authors declare that they have no competing interests.

References

  1. Agarwal, R.; Hristova, S.; O’Regan, D. A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal. 2016, 19, 290–318. [Google Scholar] [CrossRef]
  2. Ahmad, B.; Sivasundaram, S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 2009, 3, 251–258. [Google Scholar] [CrossRef]
  3. Wang, G.; Ahmad, B.; Zhang, L.; Nieto, J.J. Comments on the concept of existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 401–403. [Google Scholar] [CrossRef]
  4. Benchohra, M.; Hamani, S. The method of upper and lower solutions and impulsive fractional differential inclusions. Nonlinear Anal. Hybrid Syst. 2009, 3, 433–440. [Google Scholar] [CrossRef]
  5. Benchohra, M.; Berhoun, F. Impulsive fractional differential equations with variable times. Comput. Math. Appl. 2010, 59, 1245–1252. [Google Scholar] [CrossRef] [Green Version]
  6. Abbas, S.; Benchohra, M. Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order. Nonlinear Anal. Hybrid Syst. 2010, 4, 406–413. [Google Scholar] [CrossRef]
  7. Wang, J.R.; Li, X.; Wei, W. On the natural solution of an impulsive fractional differential equation of order q∈(1,2). Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4384–4394. [Google Scholar] [CrossRef]
  8. Wang, J.R.; Zhou, Y.; Feckan, M. On recent developments in the theory of boundary value problems for impulsive fractional differential equations. Comput. Math. Appl. 2012, 64, 3008–3020. [Google Scholar] [CrossRef] [Green Version]
  9. Liu, Y. On piecewise continuous solutions of higher order impulsive fractional differential equations and applications. Appl. Math. Comput. 2016, 287–288, 38–49. [Google Scholar] [CrossRef]
  10. Liu, Y. Survey and new results on boundary-value problems of singular fractional differential equations with impulse effects. Electron. J. Differ. Equ. 2016, 2016, 1–177. [Google Scholar] [CrossRef]
  11. Feckan, M.; Zhou, Y.; Wang, J.R. On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3050–3060. [Google Scholar] [CrossRef]
  12. Feckan, M.; Zhou, Y.; Wang, J.R. Response to “Comments on the concept of existence of solution for impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014;19:401-3.]”. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 4213–4215. [Google Scholar] [CrossRef]
  13. Wang, J.R.; Fekan, M.; Zhou, Y. A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2016, 19, 806–831. [Google Scholar] [CrossRef]
  14. Zhou, J.W.; Deng, Y.M.; Wang, Y.N. Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses. Appl. Math. Lett. 2020, 104, 106251. [Google Scholar] [CrossRef]
  15. Cao, J.Y.; Chen, L.Z.; Wang, Z.Q. A block-by-block method for the impulsive fractional ordinary differential equations. J. Appl. Anal. Comput. 2020, 10, 853–874. [Google Scholar] [CrossRef]
  16. Feng, L.M.; Han, Z.L. Oscillation behavior of solution of impulsive fractional differential equation. J. Appl. Anal. Comput. 2020, 10, 223–233. [Google Scholar] [CrossRef]
  17. Feng, L.M.; Sun, Y.B.; Han, Z.L. Philos-type oscillation criteria for impulsive fractional differential equations. J. Appl. Math. Comput. 2020, 62, 361–376. [Google Scholar] [CrossRef]
  18. Xu, M.R.; Sun, S.R.; Han, Z.L. Solvability for impulsive fractional Langevin equaiton. J. Appl. Anal. Comput. 2020, 10, 486–494. [Google Scholar]
  19. Liu, J.K.; Xu, W. An averaging result for impulsive fractional neutral stochastic differential equations. Appl. Math. Lett. 2021, 114, 106892. [Google Scholar] [CrossRef]
  20. Kucche, K.D.; Kharade, J.P. Analysis of impulsive ϕ-Hilfer fractional differential equations. Mediterr. J. Math. 2020, 17, 163. [Google Scholar] [CrossRef]
  21. Zhang, T.W.; Xiong, L.L. Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Appl. Math. Lett. 2020, 2020, 101. [Google Scholar] [CrossRef]
  22. Cheng, L.J.; Hu, L.Y.; Ren, Y. Perturbed impulsive neutral stochastic functional differential equations. Qual. Theory Dyn. Syst. 2021, 20, 27. [Google Scholar] [CrossRef]
  23. Heidarkhani, S.; Salari, A. Nontrivial solutions for impulsive fractional differential systems through variational methods. Math. Methods Appl. Sci. 2020, 43, 6529–6541. [Google Scholar] [CrossRef]
  24. Gou, H.D.; Li, Y.X. The method of lower and upper solutions for impulsive fractional evolution equations. Ann. Funct. Anal. 2020, 11, 350–369. [Google Scholar] [CrossRef]
  25. You, J.; Sun, S.R. On impulsive coupled hybrid fractional differential systems in Banach algebras. J. Appl. Math. Comput. 2020, 62, 189–205. [Google Scholar] [CrossRef]
  26. Gou, H.D.; Li, Y.X. A study on impulsive fractional hybrid evolution equations using sequence method. Comput. Appl. Math. 2020, 39, 225. [Google Scholar] [CrossRef]
  27. Ravichandran, C.; Logeswari, K.; Panda, S.K.; Nisar, K.S. On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions. Chaos Solitons Fractals 2020, 139, 110012. [Google Scholar] [CrossRef]
  28. Min, D.D.; Chen, F.Q. Existence of solutions for a fractional advection-dispersion equation with impulsive effects via variational approach. J. Appl. Anal. Comput. 2020, 10, 1005–1023. [Google Scholar] [CrossRef]
  29. Gou, H.D.; Li, Y.X. A study on impulsive Hilfer fractional evolution equations with nonlocal conditions. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 205–218. [Google Scholar] [CrossRef]
  30. Gou, H.D.; Li, Y.X. The method of lower and upper solutions for impulsive fractional evolution equations in Banach spaces. J. Korean Math. Soc. 2020, 57, 61–88. [Google Scholar]
  31. Agarwal, R.P.; Hristova, S.; O’Regan, D. Exact solutions of linear Riemann-Liouville fractional differential equations with impulses. Rocky Mt. J. Math. 2020, 50, 779–791. [Google Scholar] [CrossRef]
  32. Kucche, K.D.; Kharade, J.P.; Sousa, J.V.D.C. On the nonlinear impulsive Ψ-Hilfer fractional differential equations. Math. Model. Anal. 2020, 25, 642–660. [Google Scholar] [CrossRef]
  33. Zhang, X. On the concept of general solution for impulsive differential equations of fractional-order q∈(1,2). Appl. Math. Comput. 2015, 268, 103–120. [Google Scholar]
  34. Zhang, X.; Zhang, X.; Zhang, M. On the concept of general solution for impulsive differential equations of fractional order q∈(0,1). Appl. Math. Comput. 2014, 247, 72–89. [Google Scholar] [CrossRef]
  35. Agarwal, R.P.; Benchohra, M.; Slimani, B.A. Existence results for differential equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys. 2008, 44, 1–21. [Google Scholar]
  36. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
  37. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  38. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos; World Scientific: Singapore, 2012. [Google Scholar]
Figure 1. Three solution trajectories of (42).
Figure 1. Three solution trajectories of (42).
Fractalfract 07 00037 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, X.; Liu, Z.; Yang, S.; Peng, Z.; He, Y.; Wei, L. The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2). Fractal Fract. 2023, 7, 37. https://doi.org/10.3390/fractalfract7010037

AMA Style

Zhang X, Liu Z, Yang S, Peng Z, He Y, Wei L. The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2). Fractal and Fractional. 2023; 7(1):37. https://doi.org/10.3390/fractalfract7010037

Chicago/Turabian Style

Zhang, Xianmin, Zuohua Liu, Shixian Yang, Zuming Peng, Yali He, and Liran Wei. 2023. "The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2)" Fractal and Fractional 7, no. 1: 37. https://doi.org/10.3390/fractalfract7010037

APA Style

Zhang, X., Liu, Z., Yang, S., Peng, Z., He, Y., & Wei, L. (2023). The Right Equivalent Integral Equation of Impulsive Caputo Fractional-Order System of Order ϵ∈(1,2). Fractal and Fractional, 7(1), 37. https://doi.org/10.3390/fractalfract7010037

Article Metrics

Back to TopTop