Non-Periodicity of Complex Caputo Like Fractional Differences
Abstract
:1. Introduction
2. Properties of the Map
2.1. Stability of Fixed Points
2.2. Periodic Boundary Problem of (1)
2.3. Periodic Boundary Problem of FOM for Mandelbrot Case
- (a)
- The only fixed point of (12) is .
- (b)
- Nonzero solutions of
- (c)
- For any and , equation
2.4. Asymptotic 2-Periodic Solutions of FOM
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tavazoei, M.S.; Haeri, M. A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 2009, 45, 1886–1890. [Google Scholar] [CrossRef]
- Tavazoei, M.S. A note on fractional-order derivatives of periodic functions. Automatica 2010, 46, 945–948. [Google Scholar] [CrossRef]
- Yazdani, M.; Salarieh, H. On the existence of periodic solutions in time-invariant fractional order systems. Automatica 2011, 47, 1834–1837. [Google Scholar] [CrossRef]
- Kang, Y.-M.; Xie, Y.; Lu, J.-C.; Jiang, J. On the nonexistence of non-constant exact periodic solutions in a class of the Caputo fractional-order dynamical systems. Nonlinear Dyn. 2015, 82, 1259–1267. [Google Scholar] [CrossRef]
- Hoti, M. A note on the local stability theory for Caputo fractional planar system. J. Fract. Calc. Appl. 2022, 13, 1–8. [Google Scholar]
- Kaslik, E.; Sivasundaram, S. Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 2012, 13, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Fečkan, M. Note on periodic and asymptotically periodic solutions of fractional differential equations. In Applied Mathematical Analysis: Theory, Methods, and Applications; Dutta, H., Peters, J., Eds.; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2020; Volume 177, pp. 153–185. [Google Scholar]
- Shen, J.; Lam, J. Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 2014, 50, 547–551. [Google Scholar] [CrossRef]
- Wang, J.R.; Fečkan, M.; Zhou, Y. Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 246–256. [Google Scholar] [CrossRef]
- Diblíka, J.; Fečkan, M.; Pospíšil, M. Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations. Appl. Math. Comput. 2015, 257, 230–240. [Google Scholar] [CrossRef]
- Pospíšil, M. A note on fractional difference equations with periodic and S-asymptotically periodic right-hand sides. J. Math. Sci. 2022, 265, 669–681. [Google Scholar] [CrossRef]
- Area, I.; Nieto, J.L.J.J. On quasi-periodic properties of fractional sums and fractional differences of periodic functions. Appl. Math. Comput. 2016, 273, 190–200. [Google Scholar] [CrossRef]
- Abdelaziz, M.A.M.; Ismail, A.I.; Abdullah, F.A.; Mohd, M.H. Bifurcations and chaos in a discrete SI epidemic model with fractional order. Adv. Differ. Equ. 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Dzieliński, A.; Sierociuk, D. Stability of discrete fractional order state-space systems. J. Vib. Control 2008, 14, 1543–1556. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Wang, D.; Liu, S. A brief note on fractal dynamics of fractional Mandelbrot sets. Appl. Math. Comput. 2022, 432, 127353. [Google Scholar] [CrossRef]
- Danca, M.-F.; Fečkan, M.; Kuznetsov, N. Chaos control in the fractional order logistic map via impulses. Nonlinear Dyn. 2019, 98, 1219–1230. [Google Scholar] [CrossRef] [Green Version]
- Danca, M.-F. Puu system of fractional order and its chaos suppression. Symmetry 2020, 12, 340. [Google Scholar] [CrossRef] [Green Version]
- Danca, M.-F.; Fečkan, M.; Kuznetsov, N.; Chen, G. Coupled discrete fractional-order logistic maps. Mathematics 2021, 9, 2204. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Discrete fractional calculus and inequalities. arXiv 2009, arXiv:0911.3370. [Google Scholar]
- Čermák, J.; Gyori, I.; Nechvátal, L. On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 2015, 18, 651–672. [Google Scholar] [CrossRef]
- Fečkan, M.; Pospíšil, M. Note on fractional difference Gronwall inequalities. Electron. J. Qual. Theory Differ. Equ. 2014, 44, 1–18. [Google Scholar] [CrossRef]
- Peterson, A.C.; Goodrich, C. Discrete Fractional Calculus; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Danca, M.-F.; Fečkan, M. Mandelbrot set and Julia sets of fractional order. arXiv 2022, arXiv:2210.02037. [Google Scholar]
- Stuart, A.; Humphries, A.R. Dynamical Systems and Numerical Analysis; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Gautschi, W. Some elementary inequalities relating to the gamma and incompletegamma function. J. Math. Phys. 1959, 38, 77–81. [Google Scholar] [CrossRef]
- Kershaw, D. Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comput. 1983, 41, 607–611. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fečkan, M.; Danca, M.-F. Non-Periodicity of Complex Caputo Like Fractional Differences. Fractal Fract. 2023, 7, 68. https://doi.org/10.3390/fractalfract7010068
Fečkan M, Danca M-F. Non-Periodicity of Complex Caputo Like Fractional Differences. Fractal and Fractional. 2023; 7(1):68. https://doi.org/10.3390/fractalfract7010068
Chicago/Turabian StyleFečkan, Michal, and Marius-F. Danca. 2023. "Non-Periodicity of Complex Caputo Like Fractional Differences" Fractal and Fractional 7, no. 1: 68. https://doi.org/10.3390/fractalfract7010068
APA StyleFečkan, M., & Danca, M. -F. (2023). Non-Periodicity of Complex Caputo Like Fractional Differences. Fractal and Fractional, 7(1), 68. https://doi.org/10.3390/fractalfract7010068