Analysis and Applications of Some New Fractional Integral Inequalities
Abstract
:1. Introduction and Preliminaries
- 1.
- If and , then .
- 2.
- If and , then ℵ is non-decreasing on but not on .
- 3.
- If and , then .
- 4.
- If and , then .
- For , the resulting integrals are Riemann integrals:
- By setting and , the resulting integrals are Riemann–Liouville integrals:
- By taking and , the resulting integrals are k-Riemann–Liouville fractional integrals provided in [25] and defined as:
2. A Parameterized Integral Identity Involving Generalized Fractional Integrals
3. Some Parameterized Inequalities Involving Generalized Fractional Integrals
- 1.
- By setting , the inequalities for Riemann integrals are obtained.
- 2.
- By setting , the inequalities for Riemann–Liouville fractional integrals are obtained.
- 3.
- By setting , the inequalities for k-Riemann–Liouville fractional integrals are obtained.
4. Examples and Graphical Analysis
5. Applications
5.1. Special Means
- The arithmetic mean
- The harmonic mean
- The generalized log mean
- For , we obtain
- For , we obtain
- For , we obtain
- For , we obtain
- For , we obtain
- For , we obtain
- For , we obtain
- For , we obtain
- For , we obtain
5.2. Quadrature Formulas
- 1.
- 2.
- By setting , we have the midpoint inequality for generalized fractional integrals:
- 3.
5.3. A Family of Numerical Schemes to Solve Non-Linear Equations
Algorithm 1: Generalized Iterative Scheme |
Let and a non-linear function . Then, we have
|
- 1.
- By setting and , the trapezoidal Newton method is derived and is given in [35].
- 2.
- By setting and , the midpoint Newton method is derived and is given in [37].
- 3.
- By setting and , the average trapezoidal midpoint Newton method is derived and is given in [38].
- 4.
- By setting and , the Simpson-Newton method is derived and is given in [39].
Algorithm 2: A new iterative scheme of order 3 |
For a given , compute the approximate solution using the following two-step iterative scheme: |
5.3.1. Comparison Analysis
- ;
- .
- ;
- ;
- ;
- .
5.3.2. Basins of Attraction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Pearce, C. Selected Topics on Hermite-Hadamard Inequality and Applications; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres et en particulier d’une fonction considérée par Riemann. J. Mathématiques Pures Appliquées 1893, 9, 171–216. [Google Scholar]
- Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 1–82. [Google Scholar]
- Dragomir, S.S.; Agarwal, R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. Res. Group Math. Inequalities Appl. 1999, 2, 1–35. [Google Scholar] [CrossRef]
- Awan, M.U.; Javed, M.Z.; Rassias, M.T.; Noor, M.A.; Noor, K.I. Simpson type inequalities and applications. J. Anal. 2021, 29, 1403–1419. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. On some inequalities of Simpson-type via quasi-convex functions and applications. Transylv. J. Math. 2010, 2, 15–24. [Google Scholar]
- İşcan, İ. Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions. J. Math. 2014, 2014, 346305. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. Res. Group Math. Inequalities Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Özdemir, E.M. Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Breckner, W.W. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Publ. I’lnstitut Math. 1978, 23, 13–20. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Godunova, E.K.; Levin, V.I. Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. Numer. Math. Math. Phys. 1985, 138, 166. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite-Hadamard Inequalities for h-Preinvex Functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. On γ-preinvex functions. Filomat 2020, 34, 4137–4159. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E.; Sanal, Ü. On tgs-convex function and their inequalities. Facta Univ. Ser. Math. Inform. 2015, 30, 679–691. [Google Scholar]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
- Rentería-Baltiérrez, F.Y.; Reyes-Melo, M.E.; Puente-Córdova, J.G.; López-Walle, B. Application of fractional calculus in the mechanical and dielectric correlation model of hybrid polymer films with different average molecular weight matrices. Polym. Bull. 2023, 80, 6327–6347. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Viera-Martin, E.; Gómez-Aguilar, J.F.; Solís-Pérez, J.E.; Hernández-Pérez, J.A.; Escobar-Jiménez, R.F. Artificial neural networks: A practical review of applications involving fractional calculus. Eur. Phys. J. Spec. Top. 2022, 231, 2059–2095. [Google Scholar] [CrossRef] [PubMed]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sarikaya, M.Z.; Ertugral, F. On the generalized Hermite-Hadamard inequalities. Ann. Univ.-Craiova-Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Davis, P.J. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: New York, NY, USA, 1972. [Google Scholar]
- Ertuǧral, F.; Sarikaya, M.Z. Simpson type integral inequalities for generalized fractional integral. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. Matemáticas 2019, 113, 3115–3124. [Google Scholar] [CrossRef]
- Ertuǧral, F.; Sarikaya, M.Z.; Budak, H. On Hermite-Hadamard type inequalities associated with the generalized fractional integrals. Filomat 2022, 36, 3981–3993. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. Res. Rep. Collect. 2009, 12, 1–18. [Google Scholar]
- Babajee, D.K.R.; Dauhoo, M.Z. An analysis of the properties of the variants of Newton’s method with third order convergence. Appl. Math. Comput. 2006, 183, 659–684. [Google Scholar] [CrossRef]
- Burden, R.L.; Faires, J.D.; Burden, A.M. Numerical Analysis; Richard Stratton: Boston, MA, USA, 2015. [Google Scholar]
- Chun, C. Iterative methods improving Newton’s method by the decomposition method. Comput. Math. Appl. 2005, 50, 1559–1568. [Google Scholar] [CrossRef]
- Adomian, G. Nonlinear Stochastis System Theory and Applications to Physics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Weerakoon, S.; Fernando, T. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Dennis, J.E.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; Society for Industrial and Applied Mathematics Philadelphia: Philadelphia, PN, USA, 1996. [Google Scholar]
- Frontini, M.; Sormani, E. Some variant of Newton’s method with third-order convergence. Appl. Math. Comput. 2003, 140, 419–426. [Google Scholar] [CrossRef]
- Nedzhibov, G. On a few iterative methods for solving nonlinear equations. Appl. Math. Eng. Econ. 2002, 28, 1–8. [Google Scholar]
- Hasanov, V.I.; Ivanov, I.G.; Nedzhibov, G. A new modification of Newton’s method. Appl. Math. Sci. Eng. 2002, 27, 278–286. [Google Scholar]
- Abbasbandy, S. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 2003, 145, 887–893. [Google Scholar] [CrossRef]
Methods | IT | ||||
---|---|---|---|---|---|
2 | 6 | 0 | 0 | ||
2 | 4 | 0 | 0 | ||
2 | 4 | 0 | 0 | ||
2 | 4 | 0 | 0 | ||
2 | 4 | 0 | 0 |
Methods | IT | ||||
---|---|---|---|---|---|
6 | |||||
5 | 0 | ||||
5 | 0 | 0 | |||
6 | 0 | ||||
5 | 0 |
Methods | IT | ||||
---|---|---|---|---|---|
5 | |||||
4 | |||||
4 | 0 | ||||
4 | 0 | ||||
4 | 0 |
Methods | IT | ||||
---|---|---|---|---|---|
2 | 5 | ||||
2 | 4 | ||||
2 | 4 | ||||
2 | 3 | ||||
2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramzan, S.; Awan, M.U.; Dragomir, S.S.; Bin-Mohsin, B.; Noor, M.A. Analysis and Applications of Some New Fractional Integral Inequalities. Fractal Fract. 2023, 7, 797. https://doi.org/10.3390/fractalfract7110797
Ramzan S, Awan MU, Dragomir SS, Bin-Mohsin B, Noor MA. Analysis and Applications of Some New Fractional Integral Inequalities. Fractal and Fractional. 2023; 7(11):797. https://doi.org/10.3390/fractalfract7110797
Chicago/Turabian StyleRamzan, Sofia, Muhammad Uzair Awan, Silvestru Sever Dragomir, Bandar Bin-Mohsin, and Muhammad Aslam Noor. 2023. "Analysis and Applications of Some New Fractional Integral Inequalities" Fractal and Fractional 7, no. 11: 797. https://doi.org/10.3390/fractalfract7110797
APA StyleRamzan, S., Awan, M. U., Dragomir, S. S., Bin-Mohsin, B., & Noor, M. A. (2023). Analysis and Applications of Some New Fractional Integral Inequalities. Fractal and Fractional, 7(11), 797. https://doi.org/10.3390/fractalfract7110797