Maximum Principle for Variable-Order Fractional Conformable Differential Equation with a Generalized Tempered Fractional Laplace Operator
Abstract
:1. Introduction
2. Some Definitions
3. Main Result
4. Application of Maximum Principle
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IBVP | Initial-boundary-value problem |
FPDE | Fractional partial differential equations |
LFVCCD | Left fractional variable-order conformable Caputo derivative |
RFVCCD | Right fractional variable-order conformable Caputo derivative |
References
- Sun, H.G.; Chen, W. Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 2009, 388, 4586–4592. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Dubey, V.P.; Kumar, R.; Signh, J.; Kumar, D.; Baleanu, D. An efficient computational approach for fractional-order biological population model with carrying capacity. Chaos Solitons Fractals 2020, 138, 109880. [Google Scholar] [CrossRef]
- Copper, C.R.J.; Cowan, D.R. Filtering using variable order vertical derivatives. Comput. Geosci. 2004, 30, 455–459. [Google Scholar] [CrossRef]
- Korbel, J.; Luchko, Y. Modeling of financial processes with a space-time fractional diffusion equation of varying order. Fract. Calc. Appl. Anal. 2016, 19, 1414–1433. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 2009, 351, 218–223. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng, S.; Bai, Y. Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 2016, 19, 188–211. [Google Scholar] [CrossRef]
- Zeng, S.; Migórski, S.; Nguyen, V.; Bai, Y. Maximum principles for a class of generalized time-fractional diffusion equations. Fract. Calc. Appl. Anal. 2020, 23, 822–836. [Google Scholar] [CrossRef]
- Bonnet, B.; Cipriani, C.; Fornasier, M.; Huang, H. A measure theoretical approach to the mean-field maximum principle for training NeurODEs. Nonlinear Anal. 2023, 227, 113161. [Google Scholar] [CrossRef]
- Weinkove, B. The insulated conductivity problem, effective gradient estimates and the maximum principle. Math. Ann. 2023, 385, 1–16. [Google Scholar] [CrossRef]
- Bonalli, R.; Bonnet, B. First-Order Pontryagin Maximum Principle for Risk-Averse Stochastic Optimal Control Problems. SIAM J. Control Optim. 2023, 61, 1881–1909. [Google Scholar] [CrossRef]
- Hamaguchi, Y. On the Maximum Principle for Optimal Control Problems of Stochastic Volterra Integral Equations with Delay. Appl. Math. Optim. 2023, 87, 42. [Google Scholar] [CrossRef]
- Acosta-Soba, D.; Guillén-González, F.; Rodríguez-Galván, J.R. An upwind DG scheme preserving the maximum principle for the convective Cahn-Hilliard model. Numer. Algor. 2023, 92, 1589–1619. [Google Scholar] [CrossRef]
- Andrés, F.; Castaño, D.; Muñoz, J. Minimization of the Compliance under a Nonlocal p-Laplacian Constraint. Mathematics 2023, 11, 1679. [Google Scholar] [CrossRef]
- Giacomoni, J.; Kumar, D.; Sreenadh, K. Interior and boundary regularity results for strongly nonhomogeneous p,q-fractional problems. Adv. Calc. Var. 2023, 16, 467–501. [Google Scholar] [CrossRef]
- Guan, T.; Wang, G. Maximum principles for the space-time fractional conformable differential system involving the fractional Laplace operator. J. Math. 2020, 2020, 7213146. [Google Scholar] [CrossRef]
- Guan, T.; Wang, G.; Xu, H. Initial boundary value problems for space-time fractional conformable differential equation. AIMS Math. 2021, 6, 5275–5291. [Google Scholar] [CrossRef]
- Deng, W.; Li, B.; Tian, W.; Zhang, P. Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 2018, 16, 125–149. [Google Scholar] [CrossRef]
- Sun, J.; Nie, D.; Deng, D. Algorithm implementation and numerical analysis for the two- dimensional tempered fractional Laplacian. arXiv 2018, arXiv:1802.02349. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, W.; Ahmad, B.; Wang, G. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional p-Laplacian. Discrete Contin. Dyn. Syst. Ser. S 2021, 14, 3851–3863. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, W.; Fan, H. Finite difference schemes for the tempered fractional Laplacian. Numer. Math. Theor. Meth. Appl. 2019, 12, 492–516. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Nieto, J.J.; Zhang, L. Asymptotic Radial Solution of Parabolic Tempered Fractional Laplacian Problem. Bull. Malays. Math. Sci. Soc. 2023, 46, 1. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, W.; Karniadakis, G.E. A Riesz Basis Galerkin Method for the Tempered Fractional Laplacian. SIAM J. Numer. Anal. 2018, 56, 3010–3039. [Google Scholar] [CrossRef]
- Kwaśnicki, M. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 2017, 20, 7–51. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Anukool, W. The paradigm of quantum cosmology through Dunkl fractional Laplacian operators and fractal dimensions. Chaos Solitons Fractals 2023, 167, 113097. [Google Scholar] [CrossRef]
- Feng, L.; Turner, I.; Moroney, T.; Fawang, L. Fractional potential: A new perspective on the fractional Laplacian problem on bounded domains. Commun. Nonlinear Sci. Numer. Simul. 2023, 125, 107368. [Google Scholar] [CrossRef]
- Klimsiak, T. Asymptotics for logistic-type equations with Dirichlet fractional Laplace operator. Adv. Differ. Equ. 2023, 28, 169–216. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Anukool, W. Casimir effect associated with fractional Laplacian and fractal dimensions. Phys. E Low-Dimens. Syst. Nanostruct. 2023, 146, 115552. [Google Scholar] [CrossRef]
- Melkemi, O.; Abdo, M.S.; Aiyashi, A.; Albalwi, M.D. On the Global Well-Posedness for a Hyperbolic Model Arising from Chemotaxis Model with Fractional Laplacian Operator. J. Math. 2023, 2023, 1140032. [Google Scholar] [CrossRef]
- Revathy, J.M.; Chandhini, G. Solution of space–time fractional diffusion equation involving fractional Laplacian with a local radial basis function approximation. Int. J. Dynam. Control 2023. [Google Scholar] [CrossRef]
- Mohebalizadeh, H.; Adibi, H.; Dehghan, M. On the fractional Laplacian of some positive definite kernels with applications in numerically solving the surface quasi-geostrophic equation as a prominent fractional calculus model. Appl. Numer. Math. 2023, 188, 75–87. [Google Scholar] [CrossRef]
- Ansari, A.; Derakhshan, M.H. On spectral polar fractional Laplacian. Math. Comput. Simul. 2023, 206, 636–663. [Google Scholar] [CrossRef]
- Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Tseng, C.C. Design of variable and adaptive fractional order FIR differentiatour. Signal Process. 2006, 86, 2554–2566. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Abdulazeez, S.T.; Modanli, M. Analytic solution of fractional order Pseudo-Hyperbolic Telegraph equation using modified double Laplace transform method. Int. J. Math. Comput. Eng. 2023, 1, 15–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, T.; Zhang, L. Maximum Principle for Variable-Order Fractional Conformable Differential Equation with a Generalized Tempered Fractional Laplace Operator. Fractal Fract. 2023, 7, 798. https://doi.org/10.3390/fractalfract7110798
Guan T, Zhang L. Maximum Principle for Variable-Order Fractional Conformable Differential Equation with a Generalized Tempered Fractional Laplace Operator. Fractal and Fractional. 2023; 7(11):798. https://doi.org/10.3390/fractalfract7110798
Chicago/Turabian StyleGuan, Tingting, and Lihong Zhang. 2023. "Maximum Principle for Variable-Order Fractional Conformable Differential Equation with a Generalized Tempered Fractional Laplace Operator" Fractal and Fractional 7, no. 11: 798. https://doi.org/10.3390/fractalfract7110798
APA StyleGuan, T., & Zhang, L. (2023). Maximum Principle for Variable-Order Fractional Conformable Differential Equation with a Generalized Tempered Fractional Laplace Operator. Fractal and Fractional, 7(11), 798. https://doi.org/10.3390/fractalfract7110798