On Mixed Fractional Lifting Oscillation Spaces
Abstract
:1. Introduction
2. Independence from the Chosen Hyperbolic Wavelet Basis
- We will show the first imbedding.
- with
- •
- Let us now show the second imbedding. Let .
- Assume first that . By a change of variableTherefore
3. Optimal Relationships with Hyperbolic Besov Spaces
3.1. The Advantage of the Hyperbolic Oscillation Approach Self-Affine Cascade Functions
3.2. Optimal General Relationships
- 1.
- If then .
- 2.
- If . Then .
- 3.
- If f is compactly supported and then for all .
- 1.
- If , then .
- 2.
- .
- 3.
- If , then .
- 4.
- If then and , where denotes the spaces of functions that locally belong to .
- 5.
- If , then .
- 1.
- If and then , where .
- 2.
- If then .
- 1.
- If , then .
- 2.
- If . Then .
- 3.
- If . Then .
- 4.
- If . Then and .
- 5.
- If , then .
- 1.
- The first imbedding follows from the fact that , where was given in (5).
- 2.
- Let . ClearlySince then . Thus, the second imbedding holds.
- 3.
- Let f be compactly supported. Assume that . Since the wavelets are compactly supported, then the sum in bears on at most dyadic rectangles at scale . Let . Applying the Hölder inequalityTherefore, . Hence, for all .
- 1.
- We have already observed (7). Now, we will show that if .If , it follows thatThus, .
- 2.
- We have already observed (7). In order to prove the optimality of the embedding , it is easy to show that ifLet us now prove that . If , then by (43)So .In order to prove the optimality of the embedding , we take a and construct a function F in , such that .Let and for all . ConsiderClearly if , and elsewhere. Since the series converges, then .On the other hand, if , thenIt follows that
- 3.
- Let us now show that if . Clearly, from above
- 4.
- Let and . For , sinceTherefore . The embedding is optimal since it improves the Sobolev type embedding, see [17] Proposition 5.6 p. 188, which is sharp.Let us now show that if . Without any loss of generality, we focus only on functions f supported on the unit square of .Let be such that and are supported in . ThenAssume that . We will prove thatFor , setWriteThenSince , thenHence (46) holds.The optimality is a consequence of the optimality of .
- 5.
- Let us now show that if . Without any loss of generality, we focus only on functions f supported on the unit square.Let be such that and are supported in . As in (47)Since , then (46) holds.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jaffard, S. Wavelet Techniques in Multifractal Analysis. Proc. Symp. Pure Math. 2004, 72, 91–152. [Google Scholar] [CrossRef]
- Triebel, H. Theory of Function Spaces III -Monographs in Mathematics; Birkhäuser: Basel, Switzerland, 2006. [Google Scholar]
- Abry, P.; Clausel, M.; Jaffard, S.; Roux, S.G.; Vedel, B. Hyperbolic Wavelet Transform: An Efficient Tool for Multifractal Analysis of Anisotropic Textures. Rev. Mat. Iberoam. 2015, 31, 313–348. [Google Scholar] [CrossRef]
- Biferalea, L.; Procaccia, I. Anisotropy in Turbulent Flows and in Turbulent Transport. Phys. Rep. 2005, 414, 43–164. [Google Scholar] [CrossRef]
- Bonami, A.; Estrade, A. Anisotropic Analysis of some Gaussian Models. J. Fourier Anal. Appl. 2003, 9, 215–236. [Google Scholar] [CrossRef]
- Grujic, Z. Vortex Stretching and Anisotropic Diffusion in the 3D Navier-Stokes Equations. J. Comtemp. Math. 2016, 666, 240–251. [Google Scholar]
- Schertzer, D.; Lovejoy, S. Physically Based Rain and Cloud Modeling by Anisotropic, Multiplicative Turbulent Cascades. J. Geophys. Res. Atmos. 1987, 92, 9693–9714. [Google Scholar] [CrossRef]
- Aimar, H.; Gomez, I. Parabolic Besov Regularity for the Heat Equation. Constr. Approx. 2012, 36, 145–159. [Google Scholar] [CrossRef]
- Ben Slimane, M.; Ben Abid, M.; Ben Omrane, I.; Turkawi, M. Pointwise Rectangular Lipschitz Regularities for Fractional Brownian Sheets and Some Sierpinski Selfsimilar Functions. Mathematics 2020, 8, 1179. [Google Scholar] [CrossRef]
- Dahlke, S.; Schneider, C. Anisotropic Besov Regularity of Parabolic PDEs. arXiv 2021, arXiv:2112.09485. [Google Scholar]
- Nualtong, K.; Sumetkijakan, S. Analysis of Hölder Regularities by Wavelet-Like Transforms with Parabolic Scaling. Thai J. Math. 2005, 3, 275–283. [Google Scholar]
- Farkas, W. Atomic and Subatomic Decompositions in Anisotropic Function Spaces. Math. Nachrichten 2000, 209, 83–113. [Google Scholar] [CrossRef]
- Garrigós, G.; Hochmuth, R.; Tabacco, A. Wavelet Characterizations for Anisotropic Besov Spaces with 0 < p < 1. Proc. Edinb. Math. 2004, 47, 573–595. [Google Scholar]
- Pérez Làzaro, F.J. Embeddings for Anisotropic Besov Spaces. Acta Math. Hung. 2008, 119, 25–40. [Google Scholar] [CrossRef]
- Heping, W. Representation and Approximation of Multivariate Functions with Mixed Smoothness by Hyperbolic Wavelets. J. Math. Anal. Appl. 2004, 291, 698–715. [Google Scholar] [CrossRef]
- Nikolskii, S.M. Approximation of Functions of Several Variables and Imbedding Theorems; Springer: Berlin, Germany, 1975. [Google Scholar]
- Schmeisser, H.-J. Recent Developments in the Theory of Function Spaces with Dominating Mixed Smoothness. Nonlinear Anal. Funct. Spaces Appl. 2007, 145–204. [Google Scholar]
- Kamont, A. On the Fractional Anisotropic Wiener Field. Probab. Math. Stat. 1996, 16, 85–98. [Google Scholar]
- Ullrich, T. Function spaces with dominating mixed smoothness characterization by differences. In Jenaer Schriften zur Mathematik und Informatik; Friedrich Schiller University: Jena, Germany, 2006. [Google Scholar]
- Vybıral, J. Function spaces with Dominating Mixed Smoothness. Diss. Math. 2006, 436, 1–73. [Google Scholar] [CrossRef]
- Lizorkin, P.I.; Nikolskii, S.M. Spaces of Functions with a Mixed Smoothness From Decomposition Point of View. Trudy Mat. Inst. Steklov. 1989, 187, 143–161. [Google Scholar]
- Heping, W.; Yongsheng, S. Approximation of Multivariate Functions with a Certain Mixed Smoothness by Entire Functions. Northeast. Math. J. 1995, 11, 454–466. [Google Scholar]
- DeVore, R.-A.; Konyagin, S.-V.; Temlyakov, V.-N. Hyperbolic Wavelet Approximation. Constr. Approx. 1998, 14, 1–26. [Google Scholar] [CrossRef]
- Dũng, D.; Temlyakov, V.N.; Ullrich, T. Hyperbolic Cross Approximation. Advanced Courses in Mathematics; Birkhäuser-Springer: Barcelona, Spain, 2019; ISBN 978-3-319-92239-3. [Google Scholar]
- Schäfer, M.; Ullrich, T.; Vedel, V. Hyperbolic Wavelet Analysis of Classical Isotropic and Anisotropic Besov-Sobolev Spaces. J. Fourier Anal. Appl. 2021, 27, 51. [Google Scholar] [CrossRef]
- Bazarkhanov, D.B. ϕ-transform characterization of the Nikol’skii-Besov and Lizorkin-Triebel Function Spaces with Mixed Smoothness. East J. Approx. 2004, 10, 119–131. [Google Scholar]
- Neumann, M.H.; Von Sachs, R. Wavelet Thresholding in Anisotropic Function Classes and Application to Adaptive Estimation of Evolutionary Spectra. Ann. Stat. 1997, 25, 38–76. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Ullrich, M.; Ullrich, T. Change of Variable in Spaces of Mixed Smoothness and Numerical Integration of Multivariate Functions on the Unit Cube. Constr. Approx. 2017, 46, 69–108. [Google Scholar] [CrossRef]
- Sickel, W.; Ullrich, T. Tensor Products of Sobolev–Besov Spaces and Applications to Approximation from the Hyperbolic Cross. J. Approx. Theory 2009, 161, 748–786. [Google Scholar] [CrossRef]
- Autin, F.; Claeskens, G.; Freyermuth, J.M. Asymptotic Performance of Projection Estimators in Standard and Hyperbolic Wavelet Bases. Electron. J. Stat. 2015, 9, 1852–1883. [Google Scholar] [CrossRef]
- Donoho, D.L.; Vetterli, M.; DeVore, R.A.; Daubechies, I. Data Compression and Harmonic Analysis. IEEE Trans. Inf. Theory 1998, 6, 2435–2476. [Google Scholar] [CrossRef]
- Nitsche, P.-A. Sparse Approximation of Singularity Functions. Constr. Approx. 2005, 21, 63–81. [Google Scholar] [CrossRef]
- Wishart, J.R. Smooth Hyperbolic Wavelet Deconvolution with Anisotropic Structure. Electron. J. Stat. 2019, 13, 1694–1716. [Google Scholar] [CrossRef]
- Yserentant, H. Sparse Grid Spaces for the Numerical Solution of the Schrödinger Equation. Numer. Math. 2005, 101, 381–389. [Google Scholar] [CrossRef]
- López-Rentería, J.A.; Aguirre-Hernández, B.; Fernández-Anaya, G. A new guardian map and boundary theorems applied to the stabilization of initialized fractional control systems. Math. Methods Appl. Sci. 2022, 45, 7832–7844. [Google Scholar] [CrossRef]
- Daubechies, I. Orthonormal Bases of Compactly Supported Wavelets. Commun. Pure Appl. Math. 1988, 41, 909–996. [Google Scholar] [CrossRef]
- Rosiene, C.-P.; Nguyen, T.-Q. Tensor-product Wavelet vs. Mallat Decomposition: A comparative Analysis. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, Orlando, FL, USA, 30 May–2 June 1999; pp. 431–434. [Google Scholar]
- Zavadsky, V. Image Approximation by Rectangular Wavelet Transform. J. Math. Imaging Vis. 2007, 27, 129–138. [Google Scholar] [CrossRef]
- Ben Abid, M.; Ben Slimane, M.; Ben Omrane, I.; Turkawi, M. Multifractal Analysis of Rectangular Pointwise Regularity with Hyperbolic Wavelet Bases. J. Fourier Anal. Appl. 2021, 27, 1–34. [Google Scholar] [CrossRef]
- Ben Slimane, M.; Ben Abid, M.; Ben Omrane, I.; Halouani, B. Directional Thermodynamic Formalism. Symmetry 2019, 11, 825. [Google Scholar] [CrossRef]
- Ayache, A.; Léger, S.; Pontier, M. Drap Brownien Fractionnaire. Potential Anal. 2002, 17, 31–43. [Google Scholar] [CrossRef]
- Deng, Q.R.; Ngai, S.M. Multifractal Formalism for Self-Affine Measures with Overlaps. Arch. Math. 2009, 92, 614–625. [Google Scholar] [CrossRef]
- King, J. The Singularity Spectrum for General Sierpinski Carpets. Adv. Math. 1995, 116, 1–11. [Google Scholar] [CrossRef]
- Olsen, L. A multifractal Formalism. Adv. Math. 1995, 116, 82–196. [Google Scholar] [CrossRef]
- Ben Abid, M.; Ben Slimane, M.; Ben Omrane, I.; Turkawi, M. Dimension Prints for Continuous Functions on the Unit Square. Acta Math. Hungarica 2021, 165, 78–99. [Google Scholar] [CrossRef]
- Jaffard, S. Beyond Besov spaces, Part 2: Oscillation Spaces. Constr. Approx. 2005, 21, 29–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzughaibi, I.; Ben Slimane, M.; Algahtani, O. On Mixed Fractional Lifting Oscillation Spaces. Fractal Fract. 2023, 7, 819. https://doi.org/10.3390/fractalfract7110819
Alzughaibi I, Ben Slimane M, Algahtani O. On Mixed Fractional Lifting Oscillation Spaces. Fractal and Fractional. 2023; 7(11):819. https://doi.org/10.3390/fractalfract7110819
Chicago/Turabian StyleAlzughaibi, Imtithal, Mourad Ben Slimane, and Obaid Algahtani. 2023. "On Mixed Fractional Lifting Oscillation Spaces" Fractal and Fractional 7, no. 11: 819. https://doi.org/10.3390/fractalfract7110819
APA StyleAlzughaibi, I., Ben Slimane, M., & Algahtani, O. (2023). On Mixed Fractional Lifting Oscillation Spaces. Fractal and Fractional, 7(11), 819. https://doi.org/10.3390/fractalfract7110819