Synchronization of Julia Sets in Three-Dimensional Discrete Financial Models
Abstract
:1. Introduction
2. Basic Theory
2.1. Julia Set
2.2. Synchronization of Julia Sets
3. Julia Sets of Discrete Financial Models
4. Synchronization of Julia Sets between the Financial Models
4.1. Synchronous Coupler (I)
4.2. Synchronous Coupler (II)
4.3. Comparison of Synchronous Couplers (I) and (II)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beinhocker, E.D. The Origin of Wealth; Harvard Business Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Gentili, P.L. Why is Complexity Science valuable for reaching the goals of the UN 2030 Agenda? Rend. Fis. Acc. Lincei 2021, 32, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wen, F.; Li, J.; Yi, T.; Lin, X. Nonlinear Dynamics in Financial Systems: Advances and Perspectives. Discret. Dyn. Nat. Soc. 2014, 2014, 275750. [Google Scholar] [CrossRef]
- Huang, D.S.; Li, H.Q. Theories and Methods of Nonlinear Economics; Sichuan University Press: Chengdu, China, 1993. [Google Scholar]
- Ma, J.H.; Chen, Y.S. Study for bifurcation topological structure and the global complicated character of a kind of nonlinear finance system(I). Appl. Math. Mech. 2001, 22, 1240–1251. [Google Scholar] [CrossRef]
- Ma, J.H.; Chen, Y.S. Study for bifurcation topological structure and the global complicated character of a kind of nonlinear finance system(II). Appl. Math. Mech. 2001, 22, 1375–1382. [Google Scholar] [CrossRef]
- Gao, Q.; Ma, J.H. Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 2009, 58, 209–216. [Google Scholar] [CrossRef]
- Kai, G.; Zhang, W.; Jin, Z.; Wang, C.Z. Hopf bifurcation and dynamic analysis of an improved financial system with two delays. Complexity 2020, 9, 3734125. [Google Scholar] [CrossRef]
- Zhang, J.Z. Fractal; Tsinghua University Press: Beijing, China, 2011. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Company: New York, NY, USA, 1983. [Google Scholar]
- Mandelbrot, B.B. Fractals and Chaos: The Mandelbrot Set and Beyond; Springer: New York, NY, USA, 2004. [Google Scholar]
- Julia, G. Mémoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 1918, 8, 47–246. [Google Scholar]
- Mojica, N.S.; Navarro, J.; Marijuan, P.C.; Lahoz-Beltra, R. Cellular “bauplans”: Evolving unicellular forms by means of Julia sets and Pickover biomorphs. BioSystems 2009, 98, 19–30. [Google Scholar] [CrossRef]
- Beck, C. Physical meaning for Mandelbrot and Julia sets. Phys. Nonlinear Phenom. 1999, 125, 171–182. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Xu, R.D.; Chen, L.N.; Hu, X.P. Image compression and encryption scheme using fractal dictionary and Julia set. IET Image Process. 2015, 9, 173–183. [Google Scholar] [CrossRef]
- Bhoria, A.; Panwar, A.; Sajid, M. Mandelbrot and Julia Sets of Transcendental Functions Using Picard–Thakur Iteration. Fractal Fract. 2023, 7, 768. [Google Scholar] [CrossRef]
- Kang, J.Y.; Ryoo, C.S. Difference Equations and Julia Sets of Several Functions for Degenerate q-Sigmoid Polynomials. Fractal Fract. 2023, 7, 791. [Google Scholar] [CrossRef]
- Wang, X.; Li, W. Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior. Fractal Fract. 2022, 6, 749. [Google Scholar] [CrossRef]
- Sui, S.G.; Liu, S.T. Control of Julia sets. Chaos Solitons Fractals 2005, 26, 1135–1147. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Sun, W.H.; Liu, C.A. Control and synchronization of second Julia sets. Chin. Phys. B 2010, 19, 150–157. [Google Scholar]
- Sun, W.H.; Zhang, Y.P. Control and synchronization of Julia sets in the forced Brusselator model. Int. J. Bifurc. Chaos 2015, 25, 1550113. [Google Scholar] [CrossRef]
- Sun, W.H.; Liu, S.T. Consensus of Julia Sets. Fractal Fract. 2022, 6, 43. [Google Scholar] [CrossRef]
- Wang, Y.P.; Liu, S.T.; Li, H. Adaptive synchronization of Julia sets generated by Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105115. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H. Adaptive Anti-Synchronization of Julia Sets in Generalized Alternated System. IEEE Access 2020, 8, 175596–175601. [Google Scholar] [CrossRef]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley and Sons Ltd.: Chichester, UK, 2014. [Google Scholar]
- Liu, S.T.; Wang, P. Fractal Control Theory; Springer: Singapore, 2018. [Google Scholar]
- Wang, D.; Liu, S.T. Synchronization between the spatial Julia sets of complex Lorenz system and complex Henon map. Nonlinear Dyn. 2015, 81, 1197–1205. [Google Scholar] [CrossRef]
- Zhang, R.Y. Bifurcation analysis for a kind of nonlinear finance system with delayed feedback and its application to control of chaos. J. Appl. Math. 2012, 4, 316390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhang, Y.; Tian, D. Synchronization of Julia Sets in Three-Dimensional Discrete Financial Models. Fractal Fract. 2023, 7, 872. https://doi.org/10.3390/fractalfract7120872
Zhao Z, Zhang Y, Tian D. Synchronization of Julia Sets in Three-Dimensional Discrete Financial Models. Fractal and Fractional. 2023; 7(12):872. https://doi.org/10.3390/fractalfract7120872
Chicago/Turabian StyleZhao, Zhongyuan, Yongping Zhang, and Dadong Tian. 2023. "Synchronization of Julia Sets in Three-Dimensional Discrete Financial Models" Fractal and Fractional 7, no. 12: 872. https://doi.org/10.3390/fractalfract7120872
APA StyleZhao, Z., Zhang, Y., & Tian, D. (2023). Synchronization of Julia Sets in Three-Dimensional Discrete Financial Models. Fractal and Fractional, 7(12), 872. https://doi.org/10.3390/fractalfract7120872