Dynamics of Nonlinear Optics with Different Analytical Approaches
Abstract
:1. Introduction
2. Governing Model
Mathematical Analysis
3. Description and Application of the Methods
3.1. The Kudryashov Method
Application of the Kudryashov Method
- SET: 1
- SET 2:
3.2. The Generalized Tanh Method
- CASE 1: If , then
- CASE 2: If , then
- CASE 3: If , then
Application of the Generalized Tanh Method
- SET 1
- CASE 1: If , then
- CASE 2: If , then
- CASE 3: If , then
- SET 2
- CASE 1: If , then
- CASE 2: If , then
- CASE 3: If , then
3.3. The Sardar-Subequation Method
- CASE 1: When and , then
- CASE 2: When and , then
- CASE 3: When and , then
- CASE 4: When and , then
Application of the SSM
- CASE 1: When and , then
- CASE 2: When and , then
- CASE 3: When and , then
- CASE 4: When and , then
4. Graphical Explanation
5. Comparison with Other Methods
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Qarni, A.A.; Ebaid, A.; Alshaery, A.A.; Bakodah, H.O.; Biswas, A.; Khan, S.; Ekici, M.; Zhou, Q.; Moshokoa, S.P. Optical solitons for Lakshmanan-Porsezian-Daniel model by Riccati equation approach. Optik 2019, 182, 922–929. [Google Scholar] [CrossRef]
- Manafian, J.; Foroutan, M.; Guzali, A. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model. Eur. Phys. J. Plus 2017, 132, 1–22. [Google Scholar] [CrossRef]
- Vega-Guzman, J.; Alqahtani, R.T.; Zhou, Q.; Mahmood, M.F.; Moshokoa, S.P.; Ullah, M.Z.; Biswas, A.; Belic, M. Optical solitons for lakshmanan-porsezian-daniel model with spatio-temporal dispersion using the method of undetermined coefficients. Optik 2017, 144, 115–123. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Triki, H.; Majid, F.B.; Zhou, Q.; Moshokoa, S.P.; Mirzazadeh, M.; Belic, M. Optical solitons with Lakshmanan-Porsezian-Daniel model using a couple of integration schemes. Optik 2018, 158, 705–711. [Google Scholar] [CrossRef]
- Alqahtani, R.T.; Babatin, M.M.; Biswas, A. Bright optical solitons for LakshmananPorsezian-Daniel model by semi-inverse variational principle. Optik 2018, 154, 109–114. [Google Scholar] [CrossRef]
- Bekir, A.; Boz, A. Exact solutions for nonlinear evolution equations using exp-function method. Phys. Lett. A 2008, 372, 1619–1625. [Google Scholar] [CrossRef]
- Zahran, E.H.M.; Khater, M.M.A. Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 2016, 40, 1769–1775. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, F.; Ahmad, H. Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients. Comput. Math. Appl. 2019, 78, 2052–2062. [Google Scholar] [CrossRef]
- Faraz, N.; Sadaf, M.; Akram, G.; Zainab, I.; Khan, Y. Effects of fractional order time derivative on the solitary wave dynamics of the generalized ZK-Burgers equation. Results Phys. 2021, 25, 104217. [Google Scholar] [CrossRef]
- Arnous, A.H.; Biswas, A.; Ekici, M.; Alzahrani, A.K.; Belic, M. Optical solitons and conservation laws of Kudryashov’s equation with improved modified extended tanh-function. Optik 2020, 225, 165406. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Shohib, R.M.A.; Alngar, M.E.M. New extended generalized Kudryashov method for solving three nonlinear partial differential equations. Nonlinear Anal. Model. Control 2020, 25, 598–617. [Google Scholar] [CrossRef]
- Karaagac, B. New exact solutions for some fractional order differential equations via improved sub-equation method. Discret. Dyn. Syst.-Ser. S 2019, 12, 447–454. [Google Scholar] [CrossRef]
- Sonmezoglu, A. Exact solutions for some fractional differential equations. Adv. Math. Phys. 2015, 2015, 567842. [Google Scholar] [CrossRef]
- Iqbal, M.; Seadawy, A.R.; Lu, D. Construction of solitary wave solutions to the nonlinear modified Kortewegede Vries dynamical equation in unmagnetized plasma via mathematical methods. Mod. Phys. Lett. A 2018, 33, 1850183. [Google Scholar] [CrossRef]
- Saleh, R.; Kassem, M.; Mabrouk, S.M. Exact solutions of nonlinear fractional order partial differential equations via singular manifold method. Chin. J. Phys. 2019, 61, 290–300. [Google Scholar] [CrossRef]
- Martineza, H.Y.; Aguilarb, J.F.G.; Baleanu, D. Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik 2018, 155, 357–365. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Ali, A. Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications. Results Phys. 2018, 9, 313–320. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Manafian, J. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod. Results Phys. 2018, 8, 1158–1167. [Google Scholar] [CrossRef]
- Helal, M.A.; Seadawy, A.R.; Zekry, M.H. Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation. Appl. Math. Comput. 2014, 232, 1094–1103. [Google Scholar] [CrossRef]
- Seadawy, A.R.; El-Rashidy, K. Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma. Results Phys. 2018, 8, 1216–1222. [Google Scholar] [CrossRef]
- Shi, D.; Zhang, Y. Diversity of exact solutions to the conformable space-time fractional mew equation. Appl. Math. Lett. 2020, 99, 105994. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Ali, A. Applications of exact traveling wave solutions of modified Liouville and the symmetric regularized long wave equations via two new techniques. Results Phys. 2018, 9, 1403–1410. [Google Scholar] [CrossRef]
- Zuriqat, M. Exact solution for the fractional partial differential equation by homo separation analysis method. Afriqa Mat. 2019, 30, 1133–1143. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.; Lu, D. Elliptic function and solitary wave solutions of the higher-order nonlinear Schrödinger dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity and its stability. Eur. Phys. J. Plus 2017, 132, 371. [Google Scholar] [CrossRef]
- Arnous, A.H.; Seadawy, A.R.; Alqahtani, R.T.; Biswas, A. Optical solitons with complex ginzburg-landau equation by modified simple equation method. Optik 2017, 144, 475–480. [Google Scholar] [CrossRef]
- Abdullah; Seadawy, A.R.; Wang, J. Mathematical methods and solitary wave solutions of three-dimensional Zakharov-Kuznetsov-Burgers equation in dusty plasma and its applications. Results Phys. 2017, 7, 4269–4277. [Google Scholar] [CrossRef]
- Owyed, S.; Abdou, M.A.; Abdel-Atyb, A.H.; Nekhili, W.A.R. Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via reduced differential transform method. Chaos Solitons Fractals 2019, 217, 109474. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D.; Yue, C. Travelling wave solutions of the generalized nonlinear fifth-order kdv water wave equations and its stability. J. Taibah Univ. Sci. 2017, 11, 623–633. [Google Scholar] [CrossRef]
- Nasreen, N.; Seadawy, A.R.; Lu, D. Optical soliton and elliptic functions solutions of Sasa-satsuma dynamical equation and its applications. Appl. Math.-A J. Chin. Univ. 2021, 36, 229–242. [Google Scholar]
- Seadawy, A.R.; Lu, D.; Nasreen, N. Construction of solitary wave solutions of some nonlinear dynamical system arising in nonlinear water wave models. Indian J. Phys. 2020, 94, 1785–1794. [Google Scholar] [CrossRef]
- Nasreen, N.; Seadawy, A.R.; Lu, D. Study of modulation instability analysis and optical soliton solutions of higher-order dispersive nonlinear Schrodinger equation with dual-power law nonlinearity. Mod. Phys. Lett. B 2019, 33, 1950309. [Google Scholar] [CrossRef]
- Nasreen, N.; Seadawy, A.R.; Lu, D.; Albarakati, W.A. Dispersive solitary wave and soliton solutions of the gernalized third ordernonlinear Schrödinger dynamical equation by modified analytical method. Results Phys. 2019, 15, 102641. [Google Scholar] [CrossRef]
- Cenesiz, Y.; Tasbozan, O.; Kurt, A. Functional variable method for conformable fractional modified kdv-zkequation and Maccari system. Tbilisi Math J. 2017, 10, 117–125. [Google Scholar] [CrossRef]
- Asjad, M.I.; Faridi, W.A.; Alahazmi, S.E.; Hussain, A. The modulation instability analysis and generalized fractional propagating patterns of the Peyrard-Bishop DNA dynamical equation. Opt. Quantum Electron. 2023, 55, 232. [Google Scholar] [CrossRef]
- Rehman, H.U.; Ullah, N.; Imran, M.A. Highly dispersive optical solitons using Kudryashov’s method. Optik 2019, 199, 163349. [Google Scholar] [CrossRef]
- Ullah, N.; Rehman, H.U.; Imran, M.A.; Abdeljawad, T. Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities. Results Phys. 2020, 103021. [Google Scholar] [CrossRef]
- Imran, M.A.; Ullah, N.; Rehman, H.U.; Baleanu, D. Optical solitons for conformable space-time fractional non-linear model. J. Math. Comput. Sci. 2022, 27, 28–41. [Google Scholar]
- Faridi, W.A.; Imran, M.A.; Jhangeer, A.; Yusuf, A.; Sulaiman, T.A. The weakly non linear waves propagation for Kelvin–Helmholtz instability in the magnetohydrodynamics fow impelled by fractional theory. Opt. Quantum Electron. 2023, 55, 172. [Google Scholar] [CrossRef]
- Majid, S.Z.; Faridi, W.A.; Asjad, M.I.; Abd El-Rahman, M.; Eldin, S.M. Explicit Soliton Structure Formation for the Riemann Wave Equation and a Sensitive Demonstration. Fractal Fract. 2023, 7, 102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, N.; Asjad, M.I.; Almusawa, M.Y.; Eldin, S.M. Dynamics of Nonlinear Optics with Different Analytical Approaches. Fractal Fract. 2023, 7, 138. https://doi.org/10.3390/fractalfract7020138
Ullah N, Asjad MI, Almusawa MY, Eldin SM. Dynamics of Nonlinear Optics with Different Analytical Approaches. Fractal and Fractional. 2023; 7(2):138. https://doi.org/10.3390/fractalfract7020138
Chicago/Turabian StyleUllah, Naeem, Muhammad Imran Asjad, Musawa Yahya Almusawa, and Sayed M. Eldin. 2023. "Dynamics of Nonlinear Optics with Different Analytical Approaches" Fractal and Fractional 7, no. 2: 138. https://doi.org/10.3390/fractalfract7020138
APA StyleUllah, N., Asjad, M. I., Almusawa, M. Y., & Eldin, S. M. (2023). Dynamics of Nonlinear Optics with Different Analytical Approaches. Fractal and Fractional, 7(2), 138. https://doi.org/10.3390/fractalfract7020138