On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cloud, M.J.; Drachman, B.C.; Lebedev, L.P. Inequalities with Applications to Engineering; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar]
- Ullah, H.; Khan, M.A.; Saeed, T.; Sayed, Z.M.M. Some improvements of Jensen’s inequality via 4-convexity and applications. J. Funct. Spaces 2022, 2022, 2157375. [Google Scholar] [CrossRef]
- Borwein, J.; Lewi, A. Convex Analysis and Nonlinear Optimization, Theory and Examples; Springer: New York, NY, USA, 2000. [Google Scholar]
- Khan, M.A.; Ullah, H.; Saeed, T.; Alsulami, H.H.; Sayed, Z.M.M.M.; Alshehri, A.M. Estimations of the Slater Gap via Convexity and Its Applications in Information Theory. Math. Probl. Eng. 2022, 2022, 1750331. [Google Scholar]
- Khan, M.A.; Faisal, S.; Khan, S. Estimation of Jensen’s gap through an integral identity with applications to divergence. Innov. J. Math. 2022, 1, 99–114. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Eftekhari, N. Some remarks on (s, m)-convexity in the second sense. J. Math. Inequal. 2014, 8, 489–495. [Google Scholar] [CrossRef]
- Beckenbach, E.F.; Bellman, R. Inequalities; Springer Science & Business Media: Berlin, Germany, 2012; Volume 30. [Google Scholar]
- Bainov, D.D.; Simeonov, P.S. Integral Inequalities and Applications; Springer Science & Business Media: Berlin, Germany, 2013; Volume 57. [Google Scholar]
- Dragomir, S.S.; Pearce, C. Selected topics on Hermite–Hadamard inequalities and applications. Sci. Direct Work. Pap. 2003, 1, 463–817. [Google Scholar]
- Pachpatte, B.G. Mathemematical Inequalities; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- El Farissi, A. Simple proof and refinement of Hermite–Hadamard inequality. J. Math. Inequalities 2010, 4, 365–369. [Google Scholar] [CrossRef]
- Barsam, H.; Ramezani, M.S.; Sayyari, Y. On the new Hermite–Hadamard type inequalities for s-convex functions. Afr. Mat. 2021, 13, 1355–1367. [Google Scholar] [CrossRef]
- Khan, K.A.; Ayaz, S.; İşcan, İ.; Shah, N.A.; Weera, W. Applications of Hölder-Iscan inequality for n-times differentiable (s, m)-convex functions. AIMS Math. 2022, 8, 1620–1635. [Google Scholar] [CrossRef]
- Jiang, W.D.; Niu, D.W.; Hua, Y.; Qi, F. Generalizations of Hermite–Hadamard inequality to n-times differentiable function which s-convex in second sense. Analysis 2012, 32, 209–220. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Cortez, M.V. Féjer Type inequalities for (s, m)-convex functions in second sense. Appl. Math. Inf. Sci. 2016, 10, 1689–1696. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z. Fast evaluation of Caputo fractional derivatives and its applications to fractional diffusion equations. Commun. Copmutational Phys. 2017, 21, 650–678. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; Abualnaja, K.M. Interval valued Hadamard-Fejer and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Math. 2022, 7, 15041–15063. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Agarwal, R.P.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K.; Abualnaja, K.M. Hadamard-Mercer, Dragomir-Agarwal-Mercer, and Pachpatte-Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications. Symmetry 2022, 14, 836. [Google Scholar] [CrossRef]
- Caputo, M. Linear model of dissipation whose Q is almost frequency independent. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Application of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Nchama, G.A.M.; Mecias, A.L.; Richard, M.R. The Caputo–Fabrizio fractional integral to generate some new inequalities. Inf. Sci. Lett. 2019, 8, 73–80. [Google Scholar]
- Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential s-convex functions. Turk. J. Sci. 2020, 5, 140–146. [Google Scholar]
- Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential (s, m)-convex functions. Eng. Appl. Sci. Lett. 2020, 3, 32–39. [Google Scholar]
- Kemali, S.; Tinaztepe, G.; Işik, I.Y.; Evcan, S.S. New integral inequalities for s-convex functions in the second sense via Caputo fractional derivative and Caputo–Fabrizio integral operator. Rocky Mt. J. Math. 2022, 6, 6377–6389. [Google Scholar]
- Abbasi, A.M.K.; Anwar, M. Hermite–Hadamard inequality involving Caputo–Fabrizio fractional integrals and related inequalities via s-convex functions in the second sense. AIMS Math. 2022, 7, 18565–18575. [Google Scholar] [CrossRef]
- Li, Q.; Saleem, M.S.; Yan, P.; Zahoor, M.S.; Imran, M. On Strongly Convex Functions via Caputo–Fabrizio-Type Fractional Integral and Some Applications. J. Math. 2021, 2021, 6625597. [Google Scholar] [CrossRef]
- Tuan, N.H.; Mohammadi, H.; Rezapour, S. A mathematical model for COVID-19 transmission by using the caputo fractional derivative. Chaos Solitons Fractals 2020, 140, 110107. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.J.; Shi, F. A new perspective on the exact solutions of the local fractional modified Benjamin–Bona–Mahony equation on cantor sets. Fractal Fract. 2023, 7, 72. [Google Scholar] [CrossRef]
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M.; Altanji, M. Fractional models of falling object with linear and quadratic frictional forces considering Caputo derivative. Chaos Solitons Fractals 2023, 166, 112980. [Google Scholar] [CrossRef]
- Wanassi, O.K.; Torres, D.F. An integral boundary fractional model to the world population growth. Chaos Solitons Fractals 2023, 168, 113151. [Google Scholar] [CrossRef]
- Sajjad, A.; Farman, M.; Hasan, A.; Nisar, K.S. Transmission dynamics of fractional order yellow virus in red chili plants with the Caputo–Fabrizio operator. Math. Comput. Simul. 2023, 207, 347–368. [Google Scholar] [CrossRef]
- Areshi, M.; Seadawy, A.R.; Ali, A.; Alharbi, A.F.; Aljohani, A.F. Analytical Solutions of the Predator-Prey Model with Fractional Derivative Order via Applications of Three Modified Mathematical Methods. Fractal Fract. 2023, 7, 128. [Google Scholar] [CrossRef]
- Mahatekar, Y.; Scindia, P.S.; Kumar, P. A new numerical method to solve fractional differential equations in terms of Caputo–Fabrizio derivatives. Phys. Scr. 2023, 98, 024001. [Google Scholar] [CrossRef]
- Riddhi, D. Beta Function and Its Applications; The University of Tennesse: Knoxville, TN, USA, 2008. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P.; Barnett, S.N. Inequalities for beta and gamma functions via some classical and new integral inequalities. RGMIA Res. Rep. Collect. 1999, 2, 103–165. [Google Scholar] [CrossRef]
- Chu, Y.M.; Long, B.Y. Best possible inequalities between generalized logarithmic mean and classical means. Abstr. Appl. Anal. 2010, 2010, 303286. [Google Scholar] [CrossRef]
- Xi, B.Y.; Qi, F. Some integral inequalities of Hermite–Hadamard type for convex functions with applications to means. J. Funct. Spaces Appl. 2012, 2012, 980438. [Google Scholar] [CrossRef]
- Farid, G. On Caputo fractional derivatives via convexity. Kragujev. J. Math. 2020, 44, 393–399. [Google Scholar] [CrossRef]
- Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite–Hadamard inequality for fractional integrals of Caputo–Fabrizio type and related inequalities. J. Inequal. Appl. 2020, 1, 172. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Kermausuor, S. Caputo–Fabrizio fractional Hermite–Hadamard type and associated results for strongly convex functions. J. Anal. 2021, 29, 1351–1365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosheen, A.; Tariq, M.; Khan, K.A.; Shah, N.A.; Chung, J.D. On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions. Fractal Fract. 2023, 7, 187. https://doi.org/10.3390/fractalfract7020187
Nosheen A, Tariq M, Khan KA, Shah NA, Chung JD. On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions. Fractal and Fractional. 2023; 7(2):187. https://doi.org/10.3390/fractalfract7020187
Chicago/Turabian StyleNosheen, Ammara, Maria Tariq, Khuram Ali Khan, Nehad Ali Shah, and Jae Dong Chung. 2023. "On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions" Fractal and Fractional 7, no. 2: 187. https://doi.org/10.3390/fractalfract7020187
APA StyleNosheen, A., Tariq, M., Khan, K. A., Shah, N. A., & Chung, J. D. (2023). On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions. Fractal and Fractional, 7(2), 187. https://doi.org/10.3390/fractalfract7020187