The Propagating Exact Solitary Waves Formation of Generalized Calogero–Bogoyavlenskii–Schiff Equation with Robust Computational Approaches
Abstract
:1. Introduction
2. Description of the Proposed Technique
2.1. New Extended Direct Algebraic Method
- For and
- For and
- For and
- For and
- For and
- For and
- For ,
- For and
- For
- For
- For and
- For and
2.2. Modified Auxiliary Equation Method
3. Construction of Soliton Structures for Equation (3)
3.1. Solution with Modified Auxiliary Equation Method
3.2. Solution with New Extended Direct Algebraic Method
- (1)
- For − 4℘< 0, ℘≠ 0, the mixed trigonometric solutions were determined as follows:
- (2)
- For − 4℘> 0, ℘≠ 0, the shock solution was determined as follows:
- (3)
- For and , the trigonometric solutions were determined as follows:
- (4)
- For and , the shock-wave solution was determined as follows:
- (5)
- For and , the periodic and mixed-periodic wave solutions were determined as follows:
- (6)
- For and , some mixed-periodic and single wave solutions were determined as follows:
- (7)
- For , we deduced only one solution as follows:
- (8)
- For , , and ,
- (9)
- For ,
- (10)
- For , we deduced a single solution as follows:
- (11)
- For and ≠ 0, some mixed hyperbolic solutions were determined as follows:
- (12)
- For , , where q≠ 0 and , the single solution of the plane form was determined as follows:
4. Graphical Discussion
5. Results and Novelty
6. Conclusions
- Numerous types of solitons were obtained which covered almost all kinds of solitary waves, such as singular solutions, mixed complex solitary shock solutions, mixed singular solutions, mixed shock singular solutions, mixed trigonometric solutions, mixed periodic solutions, and mixed hyperbolic solutions.
- The real and imaginary wave propagation of the complex solutions was graphically displayed. The antikink periodic, kink periodic, periodic with antipeaked crests and antitroughs, periodic with peaked crests and troughs, bright compacton, and dark compacton behavior were graphically visualized.
- Two-dimensional, 3D, and contour visualization were presented and we observed the influence of the parameters on the traveling behavior of the obtained solutions.
- The wave number of the traveling wave profile was responsible for the control of the amplitude and the traveling behavior of the solitary wave. The singularity of the soliton wave could be controlled by the wave number parameter.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Akram, G.; Sadaf, M.; Mariyam, H.; Abbas, M. Soliton Solution of the Peyrard–Bishop–Dauxois Model of DNA Dynamics with M-Truncated and β-Fractional Derivatives Using Kudryashov’s R Function Method. Fractal Fract. 2022, 6, 616. [Google Scholar] [CrossRef]
- Asjad, M.I.; Aleem, M.; Ali, W.; Abubakar, M.; Jarad, F. Enhancement of heat and mass transfer of a physical model using Generalized Caputo fractional derivative of variable order and modified Laplace transform method. J. Math. Anal. Model. 2021, 2, 41–61. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Khan, M.A.U. Soliton solutions of the resonant nonlinear Schrödinger equation using modified auxiliary equation method with three different nonlinearities. Math. Comput. Simul. 2023, 206, 1–20. [Google Scholar] [CrossRef]
- Abbas, M.; Bibi, A.; Alzaidi, A.S.; Nazir, T.; Majeed, A.; Akram, G. Numerical Solutions of Third-Order Time-Fractional Differential Equations Using Cubic B-Spline Functions. Fractal Fract. 2022, 6, 528. [Google Scholar] [CrossRef]
- Sajid, N.; Perveen, Z.; Sadaf, M.; Akram, G.; Abbas, M.; Abdeljawad, T.; Alqudah, M.A. Implementation of the Exp-function approach for the solution of KdV equation with dual power law nonlinearity. Comput. Appl. Math. 2022, 41, 338. [Google Scholar] [CrossRef]
- Algehyne, E.A.; Abd El-Rahman, M.; Faridi, W.A.; Asjad, M.I.; Eldin, S.M. Lie point symmetry infinitesimals, optimal system, power series solution, and modulational gain spectrum to the mathematical Noyes–Field model of nonlinear homogeneous oscillatory Belousov–Zhabotinsky reaction. Results Phys. 2023, 44, 106123. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Yasin, M.W.; Ahmed, N.; Akgül, A.; Rafiq, M.; Raza, A. Numerical simulations of nonlinear stochastic Newell-Whitehead-Segel equation and its measurable properties. J. Comput. Appl. Math. 2023, 418, 114618. [Google Scholar] [CrossRef]
- Modanli, M.; Göktepe, E.; Akgül, A.; Alsallami, S.A.; Khalil, E.M. Two approximation methods for fractional order Pseudo-Parabolic differential equations. Alex. Eng. J. 2022, 61, 10333–10339. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; Bilal, S.; Khan, U.; Akgül, A.; Sultana, M.; Botmart, T.; Zahran, H.Y.; Yahia, I.S. Mathematical analysis about influence of Lorentz force and interfacial nano layers on nanofluids flow through orthogonal porous surfaces with injection of SWCNTs. Alex. Eng. J. 2022, 61, 12925–12941. [Google Scholar] [CrossRef]
- Faridi, W.A.; Asghar, U.; Asjad, M.I.; Zidan, A.M.; Eldin, S.M. Explicit propagating electrostatic potential waves formation and dynamical assessment of generalized Kadomtsev–Petviashvili modified equal width-Burgers model with sensitivity and modulation instability gain spectrum visualization. Results Phys. 2023, 44, 106167. [Google Scholar] [CrossRef]
- Faridi, W.A.; Asjad, M.I.; Jhangeer, A.; Yusuf, A.; Sulaiman, T.A. The weakly non-linear waves propagation for Kelvin–Helmholtz instability in the magnetohydrodynamics flow impelled by fractional theory. Opt. Quantum Electron. 2023, 55, 172. [Google Scholar] [CrossRef] [PubMed]
- Faridi, W.A.; Asjad, M.I.; Jarad, F. The fractional wave propagation, dynamical investigation, and sensitive visualization of the continuum isotropic bi-quadratic Heisenberg spin chain process. Results Phys. 2022, 43, 106039. [Google Scholar] [CrossRef]
- Abu Bakar, M.; Owyed, S.; Faridi, W.A.; El-Rahman, A.; Sallah, M. The First Integral of the Dissipative Nonlinear Schrödinger Equation with Nucci’s Direct Method and Explicit Wave Profile Formation. Fractal Fract. 2023, 7, 38. [Google Scholar] [CrossRef]
- Faridi, W.A.; Asjad, M.I.; Jarad, F. Non-linear soliton solutions of perturbed Chen-Lee-Liu model by Φ 6-model expansion approach. Opt. Quantum Electron. 2022, 54, 664. [Google Scholar] [CrossRef]
- Asjad, M.I.; Faridi, W.A.; Jhangeer, A.; Ahmad, H.; Abdel-Khalek, S.; Alshehri, N. Propagation of some new traveling wave patterns of the double dispersive equation. Open Phys. 2022, 20, 130–141. [Google Scholar] [CrossRef]
- Almusawa, H.; Jhangeer, A. A study of the soliton solutions with an intrinsic fractional discrete nonlinear electrical transmission line. Fractal Fract. 2022, 6, 334. [Google Scholar] [CrossRef]
- Fahim, M.R.A.; Kundu, P.R.; Islam, M.E.; Akbar, M.A.; Osman, M.S. Wave profile analysis of a couple of (3+1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach. J. Ocean. Eng. Sci. 2022, 7, 272–279. [Google Scholar] [CrossRef]
- Akinyemi, L.; Şenol, M.; Osman, M.S. Analytical and approximate solutions of nonlinear Schrödinger equation with higher dimension in the anomalous dispersion regime. J. Ocean. Eng. Sci. 2022, 7, 143–154. [Google Scholar] [CrossRef]
- Liu, J.G.; Osman, M.S. Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water wave equation. Chin. J. Phys. 2022, 77, 1618–1624. [Google Scholar] [CrossRef]
- Baber, M.Z.; Seadway, A.R.; Iqbal, M.S.; Ahmed, N.; Yasin, M.W.; Ahmed, M.O. Comparative analysis of numerical and newly constructed soliton solutions of stochastic Fisher-type equations in a sufficiently long habitat. Int. J. Mod. Phys. B 2022, 2350155. [Google Scholar] [CrossRef]
- Rehman, H.U.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R.; Anwar, I.; Baber, M.Z.; Althobaiti, A. Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation in plasma physics. Results Phys. 2022, 33, 105069. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, S.K. Lie symmetry analysis, optimal system, exact solutions and dynamics of solitons of a (3+1)-dimensional generalised BKP–Boussinesq equation. Pramana 2022, 96, 31. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, S.K.; Baleanu, D.; Osman, M.S.; Wazwaz, A.M. Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 2022, 14, 597. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Bright and dark optical solitons of the (2+1)-dimensional perturbed nonlinear Schrödinger equation in nonlinear optical fibers. Optik 2022, 251, 168334. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Albalawi, W.; El-Tantawy, S.A. Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 2022, 255, 168673. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; El-Tantawy, S.A. Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 2022, 270, 170043. [Google Scholar] [CrossRef]
- Tariq, K.U.; Wazwaz, A.M.; Ahmed, A. On some optical soliton structures to the Lakshmanan-Porsezian-Daniel model with a set of nonlinearities. Opt. Quantum Electron. 2022, 54, 432. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rizvi, S.T.; Akram, U.; Naqvi, S.K. Optical and analytical soliton solutions to higher order non-Kerr nonlinear Schrödinger dynamical model. J. Geom. Phys. 2022, 179, 104616. [Google Scholar] [CrossRef]
- Rizvi, S.T.; Seadawy, A.R.; Akram, U. New dispersive optical soliton for an nonlinear Schrödinger equation with Kudryashov law of refractive index along with P-test. Opt. Quantum Electron. 2022, 54, 310. [Google Scholar] [CrossRef]
- Younis, M.; Bilal, M.; Rehman, S.U.; Seadawy, A.R.; Rizvi, S.T.R. Perturbed optical solitons with conformable time-space fractional Gerdjikov–Ivanov equation. Math. Sci. 2022, 16, 431–443. [Google Scholar] [CrossRef]
- Tariq, K.U.; Seadawy, A.R.; Rizvi, S.T.; Javed, R. Some optical soliton solutions to the generalized (1+1)-dimensional perturbed nonlinear Schrödinger equation using two analytical approaches. Int. J. Mod. Phys. B 2022, 36, 2250177. [Google Scholar] [CrossRef]
- Bu, L.; Baronio, F.; Chen, S.; Trillo, S. Quadratic Peregrine solitons resonantly radiating without higher-order dispersion. Opt. Lett. 2022, 47, 2370–2373. [Google Scholar] [CrossRef]
- Shen, S.; Yang, Z.J.; Pang, Z.G.; Ge, Y.R. The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics. Appl. Math. Lett. 2022, 125, 107755. [Google Scholar] [CrossRef]
- Song, L.M.; Yang, Z.J.; Li, X.L.; Zhang, S.M. Coherent superposition propagation of Laguerre–Gaussian and Hermite–Gaussian solitons. Appl. Math. Lett. 2020, 102, 106114. [Google Scholar] [CrossRef]
- Guo, J.L.; Yang, Z.J.; Song, L.M.; Pang, Z.G. Propagation dynamics of tripole breathers in nonlocal nonlinear media. Nonlinear Dyn. 2020, 101, 1147–1157. [Google Scholar] [CrossRef]
- Yang, Z.J.; Zhang, S.M.; Li, X.L.; Pang, Z.G.; Bu, H.X. High-order revivable complex-valued hyperbolic-sine-Gaussian solitons and breathers in nonlinear media with a spatial nonlocality. Nonlinear Dyn. 2018, 94, 2563–2573. [Google Scholar] [CrossRef]
- Shen, S.; Yang, Z.; Li, X.; Zhang, S. Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media. Commun. Nonlinear Sci. Numer. Simul. 2021, 103, 106005. [Google Scholar] [CrossRef]
- Gonzalez-Gaxiola, O.; Biswas, A.; Ekici, M.; Khan, S. Highly dispersive optical solitons with quadratic–cubic law of refractive index by the variational iteration method. J. Opt. 2021, 51, 29–36. [Google Scholar] [CrossRef]
- Aniqa, A.; Ahmad, J. Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient ()-expansion method. Ain Shams Eng. J. 2022, 13, 101528. [Google Scholar] [CrossRef]
- Zagorac, J.L.; Sands, I.; Padmanabhan, N.; Easther, R. Schrödinger-Poisson solitons: Perturbation theory. Phys. Rev. D 2022, 105, 103506. [Google Scholar] [CrossRef]
- Bettelheim, E.; Smith, N.R.; Meerson, B. Inverse scattering method solves the problem of full statistics of nonstationary heat transfer in the Kipnis-Marchioro-Presutti model. Phys. Rev. Lett. 2022, 128, 130602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dang, S.; Li, W.; Chai, Y. Performance of the radial point interpolation method (RPIM) with implicit time integration scheme for transient wave propagation dynamics. Comput. Math. Appl. 2022, 114, 95–111. [Google Scholar] [CrossRef]
- Younas, U.; Sulaiman, T.A.; Ren, J. Diversity of optical soliton structures in the spinor Bose–Einstein condensate modeled by three-component Gross–Pitaevskii system. Int. J. Mod. Phys. B 2023, 37, 2350004. [Google Scholar] [CrossRef]
- Yao, S.W.; Akram, G.; Sadaf, M.; Zainab, I.; Rezazadeh, H.; Mustafa Inc. Bright, dark, periodic and kink solitary wave solutions of evolutionary Zoomeron equation. Results Phys. 2022, 43, 106117. [Google Scholar] [CrossRef]
- Jarad, F.; Jhangeer, A.; Awrejcewicz, J.; Riaz, M.B.; Junaid-U-Rehman, M. Investigation of wave solutions and conservation laws of generalized Calogero–Bogoyavlenskii–Schiff equation by group theoretic method. Results Phys. 2022, 37, 105479. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Alwan, B.; Abu Bakar, M.; Faridi, W.A.; Turcu, A.-C.; Akgül, A.; Sallah, M. The Propagating Exact Solitary Waves Formation of Generalized Calogero–Bogoyavlenskii–Schiff Equation with Robust Computational Approaches. Fractal Fract. 2023, 7, 191. https://doi.org/10.3390/fractalfract7020191
Al Alwan B, Abu Bakar M, Faridi WA, Turcu A-C, Akgül A, Sallah M. The Propagating Exact Solitary Waves Formation of Generalized Calogero–Bogoyavlenskii–Schiff Equation with Robust Computational Approaches. Fractal and Fractional. 2023; 7(2):191. https://doi.org/10.3390/fractalfract7020191
Chicago/Turabian StyleAl Alwan, Basem, Muhammad Abu Bakar, Waqas Ali Faridi, Antoniu-Claudiu Turcu, Ali Akgül, and Mohammed Sallah. 2023. "The Propagating Exact Solitary Waves Formation of Generalized Calogero–Bogoyavlenskii–Schiff Equation with Robust Computational Approaches" Fractal and Fractional 7, no. 2: 191. https://doi.org/10.3390/fractalfract7020191
APA StyleAl Alwan, B., Abu Bakar, M., Faridi, W. A., Turcu, A. -C., Akgül, A., & Sallah, M. (2023). The Propagating Exact Solitary Waves Formation of Generalized Calogero–Bogoyavlenskii–Schiff Equation with Robust Computational Approaches. Fractal and Fractional, 7(2), 191. https://doi.org/10.3390/fractalfract7020191