The Stochastic Structural Modulations in Collapsing Maccari’s Model Solitons
Abstract
:1. Introduction
- (i)
- ; is a continuous function of t,
- (ii)
- is independent of increments, for ,
- (iii)
- follows a normal distribution with mean 0; variance .
2. Description of the Method
2.1. Family 1
2.2. Family 2
2.3. Family 3
3. Solutions of MS
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Younis, M.; Cheemaa, N.; Mahmood, S.A.; Rizvi, S.T.R. On optical solitons: The chiral nonlinear Schrödinger equation with perturbation and Bohm potential. Opt. Quant. Electron. 2016, 48, 542. [Google Scholar] [CrossRef]
- Gaxiola, O.G.; Biswas, A. Akhmediev breathers, Peregrine solitons and Kuznetsov-Ma solitons in optical fibers and PCF by Laplace-Adomian decomposition method. Optik 2018, 172, 930–939. [Google Scholar] [CrossRef]
- Akram, G.; Abbas, M.; Tariq, H.; Sadaf, M.; Abdeljawad, T.; Alqudah, M.A. Numerical approximations for the solutions of fourth order time fractional evolution problems using a novel spline technique. Fractal Fract. 2022, 6, 170. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; AlKhidhr, H. Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation. Results Phys. 2020, 18, 103294. [Google Scholar] [CrossRef]
- Wang, X.; Javed, S.A.; Majeed, A.; Kamran, M.; Abbas, M. Investigation of Exact Solutions of Nonlinear Evolution Equations Using Unified Method. Mathematics 2022, 10, 2996. [Google Scholar] [CrossRef]
- Sajid, N.; Perveen, Z.; Sadaf, M.; Akram, G.; Abbas, M.; Abdeljawad, T.; Alqudah, M.A. Implementation of the Exp-function approach for the solution of KdV equation with dual power law nonlinearity. Comp. Appl. Math. 2022, 41, 338. [Google Scholar] [CrossRef]
- Yang, X.F.; Deng, Z.C.; Wei, Y. A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Diff. Equa. 2015, 1, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, Y.F.; Sohaly, M.A.; Abdelrahman, M.A.E. Fundamental solutions to the stochastic perturbed nonlinear Schrödinger’s equation via gamma distribution. Results Phys. 2021, 25, 104249. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; AlKhidhr, H. A robust and accurate solver for some nonlinear partial differential equations and tow applications. Phys. Scr. 2020, 95, 065212. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Alshreef, G. Closed-form solutions to the new coupled Konno–Oono equation and the Kaup-Newell model equation in magnetic field with novel statistic application. Eur. Phys. J. Plus 2021, 136, 1–10. [Google Scholar] [CrossRef]
- Karatzas, I.; Shreve, S.E. Brownian Motion and Stochastic Calculus, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Pishro-Nik, H. Introduction to Probability, Statistics and Random Processes; Kappa Research, LLC: Sunderland, MA, USA, 2014. [Google Scholar]
- Alharbi, Y.F.; El-Shewy, E.K.; Abdelrahman, M.A.E. New and effective solitary applications in Schrödinger equation via Brownian motion process with physical coefficients of fiber optics. AIMS Math. 2023, 8, 4126–4140. [Google Scholar] [CrossRef]
- Neirameh, A. New analytical solutions for the couple nonlinear Maccari’s system. Alex. Eng. J. 2016, 55, 2839–2847. [Google Scholar] [CrossRef] [Green Version]
- Chemaa, N.; Younis, M. New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system. Nonlinear Dyn. 2016, 83, 1395–1401. [Google Scholar] [CrossRef]
- Wang, G.-H.; Wang, L.-H.; Rao, J.-G.; He, J.-S. New patterns of the two-dimensional rogue waves: (2+1)-dimensional Maccari system. Commun. Theor. Phys. 2017, 67, 601. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Sulaiman, T.A.; Bulut, H. On the novel wave behaviors to the coupled nonlinear Maccari’s system with complex structure. Optik 2017, 131, 1036. [Google Scholar] [CrossRef]
- Xu, T.; Chen, Y.; Qiao, Z. Multi-dark soliton solutions for the (2+1)-dimensional multi-component Maccari system. Mod. Phys. Lett. B 2019, 33, 1950390. [Google Scholar] [CrossRef]
- Alomair, R.A.; Hassan, S.Z.; Abdelrahman, M.A.E. A new structure of solutions to the coupled nonlinear Maccari’s systems in plasma physics. AIMS Math. 2022, 7, 8588–8606. [Google Scholar] [CrossRef]
- Maccari, A. The Kadomtsev-Petviashvili equation as a source of integrable model equations. J. Math. Phys. 1996, 37, 6207. [Google Scholar] [CrossRef]
- Wan, W.; Jia, S.; Fleischer, J.W. Dispersive superfluid-like shock waves in nonlinear optics. Nat. Phys. 2007, 3, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Dubinov, A.E.; Kolotkov, D.Y. Ion-Acoustic Supersolitons in Plasma. Plasma Phys. Rep. 2012, 38, 909–912. [Google Scholar] [CrossRef]
- Verheest, F.; Hellberg, M.A.; Hereman, W.A. Head-on collisions of electrostatic solitons in nonthermal plasmas. Phys. Rev. E 2012, 86, 036402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.V.; Lakhina, G.S. Ion-acoustic supersolitons in the presence of non-thermal electrons. Commun. Nonlinear Sci. Numer. Simul. 2015, 23, 274–281. [Google Scholar] [CrossRef]
- Maccari, A. The Maccari system as model system for rogue waves. Phys. Lett. A 2020, 384, 126740. [Google Scholar] [CrossRef]
- Moser, C.; LaBelle, J.; Cairns, I.H. High bandwidth measurements of auroral Langmuir waves with multiple antennas. Ann. Geophys. 2022, 40, 231–245. [Google Scholar] [CrossRef]
- Briand, C.; Henri, P.; Génot, V.; Lormant, N.; Dufourg, N.; Cecconi, B.; Nguyen, Q.N.; Goetz, K. STEREO database of interplanetary Langmuir electric waveforms. J. Geophys. Res. Space Phys. 2016, 121, 1062–1070. [Google Scholar] [CrossRef] [Green Version]
- Demiray, S.T.; Pandir, Y.; Bulut, H. New solitary wave solutions of Maccari system. Ocean Eng. 2015, 103, 153–159. [Google Scholar] [CrossRef]
- Zhang, S. Exp-function method for solving Maccari’s system. Phys. Lett. A 2007, 371, 65–71. [Google Scholar] [CrossRef]
- Alkhidhr, H.A.; Abdelwahed, H.G.; Abdelrahman, M.A.E.; Alghanim, S. Some solutions for a stochastic NLSE in the unstable and higher order dispersive environments. Results Phys. 2022, 34, 105242. [Google Scholar] [CrossRef]
- Zhao, H. Applications of the generalized algebraic method to special-type nonlinear equations. Chaos Solitons Fractals 2008, 36, 359. [Google Scholar] [CrossRef]
- Ting, P.J.; Xun, G.T. Exact Solutions to Maccari’s System. Commun. Theor. Phys. 2007, 48, 7. [Google Scholar] [CrossRef]
- Samadyar, N.; Ordokhani, Y.; Mirzaee, F. The couple of Hermite-based approach and Crank-Nicolson scheme to approximate the solution of two dimensional stochastic diffusion-wave equation of fractional order. Eng. Anal. Bound. Elem. 2020, 118, 285–294. [Google Scholar] [CrossRef]
- Wang, X.; Yasin, M.W.; Ahmed, N.; Rafiq, M.; Abbas, M. Numerical approximations of stochastic Gray-Scott model with two novel schemes. AIMS Math. 2022, 8, 5124–5147. [Google Scholar] [CrossRef]
- Gill, T.S.; Bedi, C.; Bains, A.S. Envelope excitations of ion acoustic solitary waves in a plasma with superthermal electrons and positrons. Phys. Scr. 2010, 81, 055503. [Google Scholar] [CrossRef]
- Uddin, M.J.; Alam, M.S.; Mamun, A.A. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons. Phys. Plasmas 2015, 22, 022111. [Google Scholar] [CrossRef]
- Rostamy, D.; Zabihi, F. Exact solutions for different coupled nonlinear Maccari’s systems. Nonlinear Stud. 2012, 9, 291–301. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelwahed, H.G.; Alsarhana, A.F.; El-Shewy, E.K.; Abdelrahman, M.A.E. The Stochastic Structural Modulations in Collapsing Maccari’s Model Solitons. Fractal Fract. 2023, 7, 290. https://doi.org/10.3390/fractalfract7040290
Abdelwahed HG, Alsarhana AF, El-Shewy EK, Abdelrahman MAE. The Stochastic Structural Modulations in Collapsing Maccari’s Model Solitons. Fractal and Fractional. 2023; 7(4):290. https://doi.org/10.3390/fractalfract7040290
Chicago/Turabian StyleAbdelwahed, H. G., A. F. Alsarhana, E. K. El-Shewy, and Mahmoud A. E. Abdelrahman. 2023. "The Stochastic Structural Modulations in Collapsing Maccari’s Model Solitons" Fractal and Fractional 7, no. 4: 290. https://doi.org/10.3390/fractalfract7040290
APA StyleAbdelwahed, H. G., Alsarhana, A. F., El-Shewy, E. K., & Abdelrahman, M. A. E. (2023). The Stochastic Structural Modulations in Collapsing Maccari’s Model Solitons. Fractal and Fractional, 7(4), 290. https://doi.org/10.3390/fractalfract7040290