A Compact Scheme Combining the Fast Time Stepping Method for Solving 2D Fractional Subdiffusion Equations
Abstract
:1. Introduction
- Our numerical schemes have temporal second-order accuracy and spatial fourth-order accuracy, which are relatively high.
- We developed a fast time stepping method for solving the nonlinear fractional subdiffusion equation, which improves the computation efficiency.
- We recovered the optimal convergence accuracy for non-smooth solutions by adding correction terms.
2. Preparations
3. Fully Discrete Compact Scheme
4. Stability and Convergence Analysis
5. Analysis for Non-Smooth Solutions
5.1. Fast Algorithm
5.2. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.J.; Liu, H.; Zheng, X.C.; Wang, H. A two grid mmoc finite element method for nonlinear variable order time-fractional mobile immobile advection-diffusion equations. Comput. Math. Appl. 2020, 79, 2771–2783. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, X.C.; Chen, C.J.; Wang, H. A characteristic finite element method for the time fractional mobile/immobile advection diffusion model. Adv. Comput. Math. 2021, 47, 1–19. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Yin, X.L.; Feng, L.B.; Sun, H.G. Finite difference scheme for simulating a generalized two dimensional multi term time fractional non newtonian fluid model. Adv. Differ. Equ. 2018, 2018, 442. [Google Scholar] [CrossRef]
- Asl, M.A.; Saei, F.D.; Javidi, M.; Mahmoudi, Y. Numerical solution of fractional riesz space telegraph equation: Stability and error. Comput. Methods Differ. Equ. 2021, 9, 187–210. [Google Scholar]
- Feng, L.B.; Liu, F.W.; Turner, I.; Zheng, L.C. Novel Numerical Analysis of MultiTerm Time Fractional Viscoelastic Non Newtonian Fluid Models for Simulating Unsteady Mhd Couette Flow of a Generalized Oldroyd B Fluid. Frac. Calc. Appl. Anal. 2018, 21, 1073–1103. [Google Scholar] [CrossRef]
- Bu, W.P.; Xiao, A.G.; Zeng, W. Finite difference/finite element methods for distributed order time fractional diffusion equations. J. Sci. Comput. 2017, 72, 422–441. [Google Scholar] [CrossRef]
- Singh, J.; Gupta, P.K.; Rai, K.N. Solution of fractional bioheat equations by finite difference method and hpm. Math. Comput. Model. 2011, 54, 2316–2325. [Google Scholar] [CrossRef]
- Zhang, Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215, 524–529. [Google Scholar] [CrossRef]
- Zhu, X.G.; Yuan, Z.B.; Wang, J.G.; Nie, Y.F.; Yang, Z.Z. Finite element method for time space fractional schrodinger equation. Electron. J. Differ. Equ. 2017, 2017, 1–18. [Google Scholar]
- Liu, Y.; Du, Y.W.; Li, H.; Liu, F.W.; Wang, Y.J. Some second order theta schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algorithms 2019, 80, 533–555. [Google Scholar] [CrossRef]
- Song, M.H.; Wang, J.F.; Liu, Y.; Li, H. Local discontinuous Galerkin method combined with the L2 formula for the time fractional Cable model. J. Appl. Math. Comput. 2022, 68, 4457–4478. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, A.J.; Wang, K.X. Fast finite volume methods for space fractional diffusion equations. Discret. Contin. Dyn. Syst. Ser. B 2015, 20, 1427–1441. [Google Scholar] [CrossRef]
- Edwan, R.; Al-Omari, S.; Al-Smadi, M.; Momani, S.; Fulga, A. A new formulation of finite difference and finite volume methods for solving a space fractional convection diffusion model with fewer error estimates. Adv. Differ. Equ. 2021, 2021, 510. [Google Scholar] [CrossRef]
- Sun, Y.N.; Zhang, T. A finite difference/finite volume method for solving the fractional diffusion wave equation. J. Korean Math. Soc. 2021, 58, 553–569. [Google Scholar]
- Liu, Y.Q.; Sun, H.G.; Yin, X.L.; Feng, L.B. Fully discrete spectral method for solving a novel multi term time fractional mixed diffusion and diffusion wave equation. Z. Angew. Math. Phys. 2020, 71, 21. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Yin, X.L.; Liu, F.W.; Xin, X.Y.; Shen, Y.F.; Feng, L.B. An alternating direction implicit legendre spectral method for simulating a 2D multi term time fractional oldroyd b fluid type diffusion equation. Comput. Math. Appl. 2022, 113, 160–173. [Google Scholar] [CrossRef]
- Zaky, M.A. A legendre spectral quadrature tau method for the multi term time fractional diffusion equations. Comput. Appl. Math. 2018, 37, 3525–3538. [Google Scholar] [CrossRef]
- Yin, B.L.; Liu, Y.; Li, H.; Zhang, Z.M. Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes. Bit. Numer. Math. 2022, 62, 631–666. [Google Scholar] [CrossRef]
- Mao, W.T.; Wang, H.S.; Chen, C.J. A posteriori error estimations based on postprocessing technique for two sided fractional differential equations. Appl. Numer. Math. 2021, 167, 73–91. [Google Scholar] [CrossRef]
- Li, X.L.; Chen, Y.P.; Chen, C.J. An Improved Two grid Technique for the Nonlinear Time Fractional Parabolic Equation Based on the Block Centered Finite Difference Method. J. Comput. Math. 2022, 40, 455–473. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Li, J.; Huang, P.Z.; Zhang, C.; Guo, G.H. A linear, decoupled fractional time stepping method for the nonlinear fluid fluid interaction. Numer. Methods Partial Differ. Equ. 2019, 35, 1873–1889. [Google Scholar] [CrossRef]
- Zeng, F.H.; Turner, I.; Burrage, K. A stable fast time stepping method for fractional integral and derivative operators. J. Sci. Comput. 2018, 77, 283–307. [Google Scholar] [CrossRef]
- Alzahrani, S.S.; Khaliq, A.Q.M.; Biala, T.A.; Furati, K.M. Fourth order time stepping methods with matrix transfer technique for space fractional reaction diffusion equations. Appl. Numer. Math. 2019, 146, 123–144. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, B.L.; Li, H.; Zhang, Z.M. The unified theory of shifted convolution quadrature for fractional calculus. J. Sci. Comput. 2021, 89, 1–24. [Google Scholar] [CrossRef]
- Liu, Z.G.; Cheng, A.J.; Li, X.L. A fast high order compact difference method for the fractional cable equation. Numer. Methods Partial Differ. Equ. 2018, 34, 2237–2266. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Z.Z.; Hao, Z.P. A Fourth order compact ADI scheme for two dimensional nonlinear space fractional schrödinger equation. SIAM J. Sci. Comput. 2014, 36, A2865–A2886. [Google Scholar] [CrossRef]
- Sun, Z.Z. Numerical Methods for Partial Differential Equations, 2nd ed.; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Yin, B.L.; Liu, Y.; Li, H.; Zeng, F.H. A class of efficient time stepping methods for multi term time fractional reaction diffusion wave equations. Appl. Numer. Math. 2021, 165, 56–82. [Google Scholar] [CrossRef]
- Zeng, F.H.; Zhang, Z.Q.; Karniadakis, G.E. Second order numerical methods for multi term fractional differential equations: Smooth and nonsmooth solutions. Comput. Methods Appl. Mech. Eng. 2017, 327, 478–502. [Google Scholar] [CrossRef]
- Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719. [Google Scholar] [CrossRef]
- Schaedle, A.; Lopez-Fernandez, M.; Lubich, C. Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 2006, 28, 421–438. [Google Scholar] [CrossRef]
- Weideman, J.A.C. Optimizing talbot’s contours for the inversion of the laplace transform. SIAM J. Numer. Anal. 2006, 44, 2342–2362. [Google Scholar] [CrossRef]
- Zeng, F.H.; Turner, I.; Burrage, K.; Karniadakis, G.E.M. A new class of semi-implicit methods with linear complexity for nonlinear fractional differential equations. SIAM J. Sci. Comput. 2018, 40, A2986–A3011. [Google Scholar] [CrossRef] [Green Version]
Order | Order | ||||
---|---|---|---|---|---|
(0.1, 0.2, 0.7) | 3.2036 | ||||
1.95 | 1.95 | ||||
1.97 | 1.97 | ||||
1.99 | 1.99 | ||||
1.99 | 1.99 | ||||
(0.4, 0.5, 0.4) | |||||
1.98 | 1.98 | ||||
1.99 | 1.99 | ||||
2.00 | 2.00 | ||||
2.00 | 2.00 | ||||
(0.7, 0.8, 0.2) | |||||
1.97 | 1.97 | ||||
1.99 | 1.99 | ||||
1.99 | 1.99 | ||||
1.99 | 1.99 |
h | Order | ||
---|---|---|---|
0.5 | 5.1624 × | ||
3.87 | |||
4.01 | |||
4.09 | |||
0.8 | |||
3.87 | |||
4.02 | |||
4.24 | |||
0.2 | |||
3.87 | |||
4.00 | |||
3.91 |
Order | Order | ||||
---|---|---|---|---|---|
(0.1, 0.2, 0.7) | 3.2036 × | ||||
1.95 | 1.95 | ||||
1.97 | 1.97 | ||||
1.99 | 1.99 | ||||
1.99 | 1.99 | ||||
(0.4, 0.5, 0.4) | |||||
1.98 | 1.98 | ||||
1.99 | 1.99 | ||||
2.00 | 2.00 | ||||
2.00 | 2.00 | ||||
(0.7, 0.8, 0.2) | |||||
1.97 | 1.97 | ||||
1.99 | 1.99 | ||||
1.99 | 1.99 | ||||
1.99 | 1.99 |
Standard | Order | Correction | Order | ||
---|---|---|---|---|---|
(0.6, 0.7, 0.2) | 0.0015 | 0.0014 | |||
3.9957 | 1.94 | 1.99 | |||
1.93 | 2.00 | ||||
1.92 | 2.00 | ||||
(0.4, 0.5, 0.2) | |||||
1.90 | 1.98 | ||||
1.88 | 2.00 | ||||
1.83 | 2.00 | ||||
(0.1, 0.3, 0.1) | |||||
1.94 | 2.01 | ||||
1.93 | 2.03 | ||||
1.90 | 2.02 |
N | Standard | Fast10 | Fast30 | |||
---|---|---|---|---|---|---|
34.27 s | 8.37 s | 2.8207 | 14.23 s | 9.3092 | ||
242.69 s | 20.76 s | 4.4986 | 35.83 s | 1.2712 | ||
768.54 s | 35.68 s | 5.6412 | 61.05 s | 1.5155 | ||
1807.78 s | 54.05 s | 6.7789 | 87.66 s | 1.7977 | ||
37.95 s | 8.65 s | 4.7046 | 14.96 s | 4.6401 | ||
245.22 s | 20.51 s | 1.4745 | 33.84 s | 7.1265 | ||
795.33 s | 35.41 s | 2.1211 | 56.39 s | 9.9941 | ||
1880.17 s | 53.69 s | 2.7975 | 80.75 s | 1.2794 | ||
34.06 s | 8.38 s | 1.5528 | 13.57 s | 1.1113 | ||
233.63 s | 20.01 s | 2.3424 | 34.49 s | 1.1524 | ||
752.88 s | 33.42 s | 2.4674 | 60.22 s | 1.2723 | ||
1754.31 s | 51.04 s | 3.0534 | 87.92 s | 1.2524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, Y.; Yin, X.; Feng, L.; Wang, Z. A Compact Scheme Combining the Fast Time Stepping Method for Solving 2D Fractional Subdiffusion Equations. Fractal Fract. 2023, 7, 186. https://doi.org/10.3390/fractalfract7020186
Xu Y, Liu Y, Yin X, Feng L, Wang Z. A Compact Scheme Combining the Fast Time Stepping Method for Solving 2D Fractional Subdiffusion Equations. Fractal and Fractional. 2023; 7(2):186. https://doi.org/10.3390/fractalfract7020186
Chicago/Turabian StyleXu, Yibin, Yanqin Liu, Xiuling Yin, Libo Feng, and Zihua Wang. 2023. "A Compact Scheme Combining the Fast Time Stepping Method for Solving 2D Fractional Subdiffusion Equations" Fractal and Fractional 7, no. 2: 186. https://doi.org/10.3390/fractalfract7020186
APA StyleXu, Y., Liu, Y., Yin, X., Feng, L., & Wang, Z. (2023). A Compact Scheme Combining the Fast Time Stepping Method for Solving 2D Fractional Subdiffusion Equations. Fractal and Fractional, 7(2), 186. https://doi.org/10.3390/fractalfract7020186