Order of Convergence and Dynamics of Newton–Gauss-Type Methods
Abstract
:1. Introduction
- (a)
- No computable error bounds are provided;
- (b)
- There is no information on the uniqueness domain of the solution;
- (c)
- The local convergence analysis is provided only when ;
- (d)
- The more interesting (than the local) semilocal convergence analysis is not provided.
2. Convergence Analysis of (2)
- (A1)
- a simple solution of (1) exists and ;
- (A2)
- (A3)
- ;
- (A4)
- ;
- (A5)
- (A6)
- for parameter to be specified in what follows and and are scalars.
3. Convergence Analysis of (3)
4. Convergence Analysis of (4)
5. Semilocal Convergence
- (E1)
- and a parameter such that the operator is well defined and
- (E2)
- for eachSet
- (E3)
- for each
- (E4)
- The conditions of Lemma 1 hold and
- (E5)
6. Numerical Examples
7. Basins of Attractions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Argyros, I.K. The Theory and Applications of Iteration Methods, 2nd ed.; Engineering Series; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2022. [Google Scholar]
- Argyros, I.K.; Magréñan, A.A. A Contemporary Study of Iterative Schemes; Elsevier, Academic Press: New York, NY, USA, 2018. [Google Scholar]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 2012, 25, 2369–2374. [Google Scholar] [CrossRef]
- Cordero, A.; Martínez, E.; Toregrossa, J.R. Iterative methods of order four and five for systems of nonlinear equations. J. Comput. Appl. Math. 2012, 231, 541–551. [Google Scholar] [CrossRef]
- Magréñan, A.A.; Argyros, I.K.; Rainer, J.J.; Sicilia, J.A. Ball convergence of a sixth-order Newton-like method based on means under weak conditions. J. Math. Chem. 2018, 56, 2117–2131. [Google Scholar] [CrossRef]
- Shakhno, S.M.; Gnatyshyn, O.P. On an iterative Method of order 1.839... for solving nonlinear least squares problems. Appl. Math. Applic. 2005, 161, 253–264. [Google Scholar]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Barati, A. A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Appl. Math. Comput. 2007, 188, 257–261. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Barati, A. A third-order newton-type method to solve systems of nonlinear equations. Appl. Math. Comput. 2007, 187, 630–635. [Google Scholar] [CrossRef]
- Frontini, M.; Sormani, E. Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 2004, 149, 771–782. [Google Scholar] [CrossRef]
- Homeier, H.H.H. A modified newton method with cubic convergence: The multivariable case. J. Comput. Appl. Math 2004, 169, 161–169. [Google Scholar] [CrossRef]
- Khirallah, M.Q.; Hafiz, M.A. Novel three order methods for solving a system of nonlinear equations. Bull. Math. Sci. Appl. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Noor, M.A.; Waseem, M. Some iterative methods for solving a system of nonlinear equations. J. Comput. Math. Appl. 2009, 57, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Podisuk, M.; Chundang, U.; Sanprasert, W. Single-step formulas and multi-step formulas of integration method for solving the initial value problem of ordinary differential equation. Appl. Math. Comput. 2007, 190, 1438–1444. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, Q.; Huang, C. Third- and fifth-order Newton–Gauss methods for solving nonlinear equations with n variables. Appl. Math. Comput. 2016, 290, 250–257. [Google Scholar] [CrossRef]
- Behl, R.; Maroju, P.; Martínez, E.; Singh, S. A study of the local convergence of a fifth order iterative scheme. Indian J. Pure Appl. Math. 2020, 51, 439–455. [Google Scholar]
- Iliev, A.; Iliev, I. Numerical method with order t for solving system nonlinear equations. In Proceedings of the Collection of Works from the Scientific Conference Dedicated to 30 Years of FMI, Plovdiv, Bulgaria, 1–3 November 2000; pp. 105–112. [Google Scholar]
- Magréñan, A.A.; Gutiérrez, J.M. Real dynamics for damped Newton’s method applied to cubic polynomials. J. Comput. Appl. Math. 2015, 275, 527–538. [Google Scholar] [CrossRef]
- George, S.; Sadananda, R.; Jidesh, P.; Argyros, I.K. On the Order of Convergence of Noor-Waseem Method. Mathematics 2022, 10, 4544. [Google Scholar] [CrossRef]
k | Noor–Waseem Method [19] | Ratio | Newton–Simpson Method [7] | Ratio | Newton–Gauss Method (2) | Ratio |
---|---|---|---|---|---|---|
0 | ||||||
1 | 0.052792 | 0.052792 | ||||
2 | 0.259156 | (1.019452,0.265424) | 0.259156 | |||
3 | 1.580144 | (0.992853,0.306348) | 1.580144 | |||
4 | 1.977957 | (0.992780,0.306440) | 1.977957 | |||
5 | 1.979028 | (0.992780,0.306440) | 1.979028 |
k | Noor–Waseem Method [19] | Ratio | Newton–Simpson Method [7] | Ratio | Newton–Gauss Method (3) | Ratio |
---|---|---|---|---|---|---|
0 | ||||||
1 | 0.004363 | (1.127146,0.054883) | 0.004363 | |||
2 | 0.501670 | (0.993328,0.305734) | 0.501670 | |||
3 | 3.889832 | (0.992780,0.306440) | 3.889832 | |||
4 | 3.916553 | (0.992780,0.306440) | 3.916553 |
k | Noor–Waseem Method [19] | Ratio | Newton–Simpson Method [7] | Ratio | Newton–Gauss Method (4) | Ratio |
---|---|---|---|---|---|---|
0 | ||||||
1 | 0.001211 | (1.067906,0.174885) | 0.001211 | |||
2 | 1.384152 | (0.992784,0.306436) | 1.384152 | |||
3 | 5.509414 | (0.992780,0.306440) | 5.509414 |
k | Noor–Waseem Method [19] | Newton–Simpson Method [7] | Newton–Gauss Method (2) |
---|---|---|---|
0 | (1.000000000000000, −1.500000000000000) | (1.000000000000000, −1.500000000000000) | (1.000000000000000, −1.500000000000000) |
1 | (1.316634871110971, −0.905663824661460) | (1.314989088706198, −0.903348274351101) | (1.315156227449432, −0.903583355982947) |
2 | (1.271411313380937, −0.880832720130447) | (1.271407142827536, −0.880830551463514) | (1.271407525251500, −0.880830738549647) |
3 | (1.271384307950135, −0.880819073102663) | (1.271384307950134, −0.880819073102662) | (1.271384307950134, −0.880819073102662) |
4 | (1.271384307950131, −0.880819073102661) | (1.271384307950131, −0.880819073102661) | (1.271384307950131, −0.880819073102661) |
k | Noor–Waseem Method [19] | Newton–Simpson Method [7] | Newton–Gauss Method (3) |
---|---|---|---|
0 | (1.000000000000000, −1.500000000000000) | (1.000000000000000, −1.500000000000000) | (1.000000000000000, −1.500000000000000) |
1 | (1.282088857420137, −0.883233404186709) | (1.281438557013089, −0.883099635427437) | (1.281504327445928, −0.883113109114400) |
2 | (1.271384307959147, −0.880819073106927) | (1.271384307956672, −0.880819073105759) | (1.271384307956891, −0.880819073105862) |
3 | ( 1.271384307950131, −0.880819073102661) | (1.271384307950131, −0.880819073102661) | (1.271384307950131, −0.880819073102661) |
k | Noor–Waseem Method [19] | Newton–Simpson Method [7] | Newton–Gauss Method (4) |
---|---|---|---|
0 | (1.000000000000000, −1.500000000000000) | (1.000000000000000, −1.500000000000000) | (1.000000000000000, −1.500000000000000) |
1 | (1.270238276431529, −0.880218508041528) | (1.270356433740484, −0.880274526138580) | (1.270344819162619, −0.880269006195813) |
2 | (1.271384307950131, −0.880819073102661) | (1.271384307950131, −0.880819073102661) | ( 1.271384307950131, −0.880819073102661) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadananda, R.; George, S.; Argyros, I.K.; Padikkal, J. Order of Convergence and Dynamics of Newton–Gauss-Type Methods. Fractal Fract. 2023, 7, 185. https://doi.org/10.3390/fractalfract7020185
Sadananda R, George S, Argyros IK, Padikkal J. Order of Convergence and Dynamics of Newton–Gauss-Type Methods. Fractal and Fractional. 2023; 7(2):185. https://doi.org/10.3390/fractalfract7020185
Chicago/Turabian StyleSadananda, Ramya, Santhosh George, Ioannis K. Argyros, and Jidesh Padikkal. 2023. "Order of Convergence and Dynamics of Newton–Gauss-Type Methods" Fractal and Fractional 7, no. 2: 185. https://doi.org/10.3390/fractalfract7020185
APA StyleSadananda, R., George, S., Argyros, I. K., & Padikkal, J. (2023). Order of Convergence and Dynamics of Newton–Gauss-Type Methods. Fractal and Fractional, 7(2), 185. https://doi.org/10.3390/fractalfract7020185