Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems
Abstract
:1. Introduction
2. Delta-Stub-Based Wilkinson Power Divider (WPD) Design Configuration and Characterization Results
3. Single-Element Minkowski–Sierpinski Fractal Antenna and Four-Element Antenna Array Design and Characterization Results
3.1. Single-Element Fractal Antenna Design
3.2. Four-Element (2 × 2 Configuration) Minkowski–Sierpinski Fractal Antenna Array (MSFAA) Design and Characterization
4. Comparison of Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akyildiz, I.F.; Han, C.; Hu, Z.; Nie, S.; Jornet, J.M. Terahertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade. IEEE Trans. Commun. 2022, 70, 4250–4285. [Google Scholar] [CrossRef]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Statista Research Department. Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025. 27 November 2016. Available online: www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 15 September 2022).
- Nasir, S.A.; Mustaqim, M.; Khawaja, B.A. Antenna Array for 5th Generation 802.11ac Wi-Fi Applications. In Proceedings of the 11th International Conference on High-capacity Optical Networks & Emerging Technologies (HONET), UNC Charlotte, NC, USA, 15–17 December 2014. [Google Scholar]
- Khorov, E.; Kiryanov, A.; Lyakhov, A.; Bianchi, G. A Tutorial on IEEE 802.11ax High Efficiency WLANs. IEEE Commun. Surv. Tutor. 2019, 21, 197–216. [Google Scholar] [CrossRef]
- Khawaja, B.A.; Cryan, M.J. Study of Millimeter Wave Phase Shift in 40 GHz Hybrid Mode Locked Lasers. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 182–184. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory, Analysis and Design, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Wong, H.; Luk, K.-M.; Chan, C.H.; Xue, Q.; So, K.K.; Lai, H.W. Small Antennas in Wireless Communications. Proc. IEEE 2012, 100, 2109–2121. [Google Scholar] [CrossRef]
- Tan, M.C.; Li, M.; Abbasi, Q.H.; Imran, M. A Wideband Beam forming Antenna Array for 802.11ac and 4.9 GHz. In Proceedings of the Antennas and Propagation (EuCAP) 2019 13th European Conference, Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Kim, J.H.; Han, J.H.; Park, J.S.; Kim, J.G. Design of phased array antenna for 5G mm-wave beamforming system. In Proceedings of the 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Kaohsiung, Taiwan, 26–29 July 2016; pp. 201–202. [Google Scholar]
- Karimbu Vallappil, A.; Khawaja, B.A.; Rahim, M.K.A.; Iqbal, M.N.; Chattha, H.T. Metamaterial-Inspired Electrically Compact Triangular Antennas Loaded with CSRR and 3 × 3 Cross-Slots for 5G Indoor Distributed Antenna Systems. Micromachines 2022, 13, 198. [Google Scholar] [CrossRef]
- Sharawi, M.S. A 5-GHz 4/8-element MIMO antenna system for IEEE 802.11ac devices. Microw. Opt. Technol. Lett. 2013, 55, 1589–1594. [Google Scholar] [CrossRef]
- Vallappil, A.K.; Rahim, M.K.A.; Khawaja, B.A.; Iqbal, M.N.; Murad, N.A.; Gajibo, M.M.; Nur, L.O.; Nugroho, B.S. Complementary split-ring resonator and strip-gap based metamaterial fractal antenna with miniature size and enhanced bandwidth for 5G applications. J. Electromagn. Waves Appl. 2022, 36, 787–803. [Google Scholar] [CrossRef]
- Abed, A.T.; Jawad, A.M. Compact Size MIMO Amer Fractal Slot Antenna for 3G, LTE (4G), WLAN, WiMAX, ISM and 5G Communications. IEEE Access 2019, 7, 125542–125551. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, J.; Ran, X.; Zhu, C. A novel Koch and Sierpinski combined fractal antenna for 2G/3G/4G/5G/WLAN/navigation applications. Microw. Opt. Technol. Lett. 2017, 59, 2147–2155. [Google Scholar] [CrossRef]
- Jilani, S.F.; Aziz, A.K.; Abbasi, Q.H.; Alomainy, A. Ka-band Flexible Koch Fractal Antenna with Defected Ground Structure for 5G Wearable and Conformal Applications. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Company: New York, NY, USA, 1982; ISBN 978-0716711865. [Google Scholar]
- Fan, J.A.; Yeo, W.-H.; Su, Y.; Hattori, Y.; Lee, W.; Jung, S.-Y.; Zhang, Y.; Liu, Z.; Cheng, H.; Falgout, L.; et al. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266. [Google Scholar] [CrossRef]
- Oraizi, H.; Hedayati, S. Miniaturized UWB Monopole Microstrip Antenna Design by the Combination of Giusepe Peano and Sierpinski Carpet Fractals. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 67–70. [Google Scholar] [CrossRef]
- Manimegalai, B.; Raju, S.; Abhaikumar, V. A Multifractal Cantor Antenna for Multiband Wireless Applications. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 359–362. [Google Scholar] [CrossRef]
- Vallappil, A.K.; Khawaja, B.A.; Khan, I.; Mustaqim, M. Dual-Band Minkowski-Sierpinski Fractal Antenna for Next Generation Satellite Communications and Wireless Body Area Networks. Microw. Opt. Technol. Lett. 2018, 60, 171–178. [Google Scholar] [CrossRef]
- Chauhan, R.; Gupta, S. A Circular Fractal Antenna Array. In Proceedings of the 2019 National Conference on Communications (NCC), Bangalore, India, 20–23 February 2019; pp. 1–6. [Google Scholar]
- Mohanty, A.; Sahu, S. Koch-fed-Obtrude/Slot AGP Fractal Antennas for Wideband Applications. In Proceedings of the 2018 IEEE Indian Conference on Antennas and Propagation (InCAP), Hyderabad, India, 16–19 December 2018; pp. 1–3. [Google Scholar]
- Patanvariya, D.G.; Chatterjee, A.; Kola, K.; Naik, S. Design of a linear array of fractal antennas with high directivity and low cross-polarization for dedicated short range communication application. Int. J. RF Microw. Comput.-Aided Eng. 2019, 1, e22038. [Google Scholar] [CrossRef]
- Kumar, A.; Partap, A. On the Design of 2×2 Element Fractal Antenna Array using Dragonfly Optimization. Int. J. Comput. Appl. 2018, 179, 27–34. [Google Scholar] [CrossRef]
- Anitha, D.V.R. A Novel Design of Rectangular Antenna Array Using Fractal Tree Structure. Proceeding of URSI procGA14, ursi_paper2340. 2014. Available online: https://www.ursi.org/proceedings/procGA14/papers/ursi_paper2340.pdf (accessed on 24 July 2022).
- Kaur, A.; Gupta, S. A complementary Sierpinski gasket fractal antenna array for wireless MIMO portable devices. Microw. Opt. Technol. Lett. 2019, 61, 436–442. [Google Scholar] [CrossRef]
- Paul, L.C.; Ali, M.H.; Rani, T.; Saha, H.K.; Jim, M.T. A sixteen-element dual band compact array antenna for ISM/Bluetooth/Zigbee/WiMAX/WiFi-2.4/5/6 GHz applications. Heliyon 2022, 8, e11675. [Google Scholar] [CrossRef]
- Tang, C.; Zheng, H.; Wang, M.; An, X.; Wang, X.; Li, E. A Dual-Band Antenna Array with High Gain and Miniaturized Structure. In Proceedings of the 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT), Harbin, China, 20–22 January 2019; pp. 735–738. [Google Scholar]
- Palanisamy; Satheeshkumar; Thangaraju, B.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Alassery, F. A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication. Energies 2021, 14, 6204. [Google Scholar] [CrossRef]
- Prabhakar, D.; Rao, P.M.; Satyanarayana, M. Sierpinski Carpet Fractal Antenna Array Using Quarter-Wave Feed Network for Wireless Applications. In Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications; Springer: Singapore, 2018; pp. 445–453. [Google Scholar] [CrossRef]
- Kombate, D. Wanglina The Internet of Vehicles Based on 5G Communications. In Proceedings of the 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 15–18 December 2016. [Google Scholar]
- Qazi, S.; Sabir, F.; Khawaja, B.A.; Atif, S.M.; Mustaqim, M. Why is Internet of Autonomous Vehicles not as Plug and Play as We Think? Lessons to Be Learnt from Present Internet and Future Directions. IEEE Access 2020, 8, 133015–133033. [Google Scholar] [CrossRef]
- Bekmezci, I.; Sahingoz, O.K.; Temel, Ş. Flying Ad-Hoc Networks (FANETs): A survey. AdHoc Netw. 2013, 11, 1254–1270. [Google Scholar] [CrossRef]
- Walker, S.; Rice, D.; Kahn, M.; Clark, J. Why the World’s Militaries Are Embracing 5G: To Fight on Tomorrow’s More Complicated Battlefields, Militaries Must Adapt Commercial Technologies. IEEE Spectrum. 11 June 2022. Available online: https://spectrum.ieee.org/lockheed-martin-5g (accessed on 4 September 2022).
- Mustaqim, M.; Khawaja, B.A.; Razzaqi, A.A.; Zaidi, S.S.H.; Jawed, S.A.; Qazi, S.H. Wideband and High Gain Antenna Arrays for UAV-to-UAV and UAV-to-Ground Communication in Flying Ad-Hoc Networks (FANETs). Microw. Opt. Technol. Lett. 2018, 60, 1164–1170. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.; Ali, A.H.; Falcone, F.; Limiti, E. Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures. IET Microw. Antennas Propag. 2018, 12, 2241–2247. [Google Scholar] [CrossRef]
- Mohanty; Asutosh; Behera, B.R.; Esselle, K.P.; Alsharif, M.H.; Jahid, A.; Mohsan, S.A.H. Investigation of a Dual-Layer Metasurface-Inspired Fractal Antenna with Dual-Polarized/-Modes for 4G/5G Applications. Electronics 2022, 11, 2371. [Google Scholar] [CrossRef]
- Patanvariya, D.G.; Chatterjee, A.; Kola, K.S. High-Gain and Circularly Polarized Fractal Antenna Array for Dedicated Short Range Communication Systems. Prog. Electromagn. Res. C 2020, 101, 133–146. [Google Scholar] [CrossRef]
Antenna Dimensions | Value (Unit: mm) |
---|---|
L1 | 38.5 |
W1 | 25 |
L3 | 7 |
L4 | 2.5 |
L5 | 0.8 |
L6 | 7.35 |
L7 | 2 |
Parameter | MSFAA Simulation Results | MSFAA Measurement Results | ||
---|---|---|---|---|
4.17 GHz | 5.97 GHz | 4.17 GHz | 5.97 GHz | |
Return loss (dB) | 21.2 | 29.1 | 17.1 | 25.8 |
Bandwidth (MHz) (for VSWR < 2) | 96 | 165 | 85 | 182 |
Gain (dB) | 4.9 | 10.5 | 4.19 | 9.6 |
E-plane Beamwidth (Deg) | 34.8 | 17.5 | 31 | 26.2 |
H-plane Beamwidth (Deg) | 36.8 | 17.1 | 32 | 28 |
Reference/Year | Multiband | Technique | Maximum Gain (dB) | Radiation Efficiency | Radiation Pattern in Boresight for All Frequency Bands | No. of Antenna Elements | Bandwidth (MHz) | Antenna Spacing |
---|---|---|---|---|---|---|---|---|
[23]/2019 | Yes | Circular fractal array | 5.94 | - | No | 4 | ~500 | 0.5λ |
[24]/2018 | Yes | Koch-fed obtrude/slot asymmetric ground plane | 5 | 93% | No | 4 | ~104 | - |
[25]/2019 | No | Fibonacci series with the incorporation of Koch snowflake structure | 15.18 | 72.12% | No | 4 | 105 | 0.5λ |
[26]/2018 | Yes | Sierpinski carpet fractal antenna array | 11 | - | No | 8 | 90 | 0.9λ |
[27]/2014 | Yes | Fractal tree antenna array | 9.3 | - | No | 4 | ~40 | - |
[28]/2019 | No | Complementary Sierpinski gasket fractal antenna array | 9.98 | 68% | No | 4 | ~400 | - |
[29]/2022 | Yes | Rectangular and circular patch antenna array | 5.71 | 97% | No | 16 | 980 | 0.3λ |
[30]/2019 | Yes | Rectangular slotted patch antenna array | 4.5 | - | No | 2 | 930 | 0.24λ |
[31]/2021 | Yes | Tri-band hexagonal fractal antenna array | 4.2 | - | No | 2 | 300 | - |
[32]/2018 | Yes | Sierpinski carpet fractal antenna array | 2.82 | - | No | 2 | ~40 | 0.7λ |
[38]/2018 | No | Patch antenna arrays based on fractal metamaterial EBG structures | ~5.5 | ~81% | No | 4 | 1250 | 0.5λ |
[39]/2022 | Yes | Metasurface-inspired fractal antenna | 7.7 | ~80% | Yes | - | 244 | - |
[40]/2020 | No | Koch-snowflake-based fractal antenna | 11 | 71% | Yes | 4 | 165 | 0.5λ |
[This Work]/2022 | Yes | Combined Minkowski–Sierpinski carpet antenna | 9.61 | 96% | Yes | 4 | 182 | 0.7λ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallappil, A.K.; Khawaja, B.A.; Rahim, M.K.A.; Uzair, M.; Jamil, M.; Awais, Q. Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems. Fractal Fract. 2023, 7, 158. https://doi.org/10.3390/fractalfract7020158
Vallappil AK, Khawaja BA, Rahim MKA, Uzair M, Jamil M, Awais Q. Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems. Fractal and Fractional. 2023; 7(2):158. https://doi.org/10.3390/fractalfract7020158
Chicago/Turabian StyleVallappil, Arshad Karimbu, Bilal A. Khawaja, Mohamad Kamal A. Rahim, Muhammad Uzair, Mohsin Jamil, and Qasim Awais. 2023. "Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems" Fractal and Fractional 7, no. 2: 158. https://doi.org/10.3390/fractalfract7020158
APA StyleVallappil, A. K., Khawaja, B. A., Rahim, M. K. A., Uzair, M., Jamil, M., & Awais, Q. (2023). Minkowski–Sierpinski Fractal Structure-Inspired 2 × 2 Antenna Array for Use in Next-Generation Wireless Systems. Fractal and Fractional, 7(2), 158. https://doi.org/10.3390/fractalfract7020158