Quantum Weighted Fractional-Order Transform
Abstract
:1. Introduction
2. Weighted Fractional-Order Transform
2.1. Weighted Fractional Fourier Transform
2.2. Weighted Fractional Hartley Transform
2.3. Weighted Fractional-Order Transform
3. Quantum Weighted Fractional Fourier Transform
4. Quantum Weighted Fractional Hartley Transform
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, G.E. Cramming More Components onto Integrated Circuits; McGraw-Hill: New York, NY, USA, 1965; Volume 38, pp. 114–117. [Google Scholar]
- Benioff, P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 1980, 22, 563–591. [Google Scholar] [CrossRef]
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Deutsch, D.; Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1992, 439, 553–558. [Google Scholar] [CrossRef]
- Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1985, 400, 97–117. [Google Scholar]
- Shor, P.W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings of the 35th Annual Symposium on Foundation of Computer Science, Washington, DC, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 1 July 1996; pp. 212–219. [Google Scholar]
- Boyer, M.; Brassard, G.; Høyer, P.; Tapp, A. Tight bounds on quantum searching. Fortschr. Phys. Prog. Phys. 1998, 46, 493–505. [Google Scholar] [CrossRef]
- Grover, L.K. Quantum Computers Can Search Rapidly by Using Almost Any Transformation. Phys. Rev. Lett. 1998, 80, 4329–4332. [Google Scholar] [CrossRef] [Green Version]
- Biham, E.; Biham, O.; Biron, D.; Grassl, M.; Lidar, D.A. Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 1999, 60, 2742–2745. [Google Scholar] [CrossRef] [Green Version]
- Long, G.L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A 2001, 64, 022307. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Li, S. Phase matching in Grover’s algorithm. Phys. Lett. A 2007, 366, 42–46. [Google Scholar] [CrossRef]
- Brassard, G.; Høyer, P.; Tapp, A. Quantum counting, Automata, Languages and Programming. In Proceedings of the 25th International Colloquium, ICALP’98, Aalborg, Denmark, 13–17 July 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 820–831. [Google Scholar]
- Grover, L.K. Synthesis of Quantum Superpositions by Quantum Computation. Phys. Rev. Lett. 2000, 85, 1334–1337. [Google Scholar] [CrossRef]
- Hao, G.; Gui-Lu, L.; Feng, L. Quantum Algorithms for Some Well-Known NP Problems. Commun. Theor. Phys. 2002, 37, 424–426. [Google Scholar] [CrossRef]
- Pang, C.-Y.; Zhou, R.-G.; Ding, C.-B.; Hu, B.-Q. Quantum search algorithm for set operation. Quantum Inf. Process. 2012, 12, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Furrow, B. A panoply of quantum algorithms. arXiv 2006, arXiv:quant-ph/0606127. [Google Scholar] [CrossRef]
- Baritompa, W.P.; Bulger, D.W.; Wood, G.R. Grover’s quantum algorithm applied to global optimization. SIAM J. Optim. 2005, 15, 1170–1184. [Google Scholar] [CrossRef]
- Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 2009, 103, 150502. [Google Scholar] [CrossRef]
- Clader, B.D.; Jacobs, B.C.; Sprouse, C.R. Preconditioned Quantum Linear System Algorithm. Phys. Rev. Lett. 2013, 110, 250504. [Google Scholar] [CrossRef] [Green Version]
- Childs, R.K.A.M.; Kothari, R.; Somma, R.D. Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision. SIAM J. Comput. 2017, 46, 1920–1950. [Google Scholar] [CrossRef] [Green Version]
- Wossnig, L.; Zhao, Z.; Prakash, A. Quantum Linear System Algorithm for Dense Matrices. Phys. Rev. Lett. 2018, 120, 050502. [Google Scholar] [CrossRef] [Green Version]
- Preskill, J. Quantum computing and the entanglement frontier. arXiv 2012, arXiv:1203.5813. [Google Scholar]
- Boixo, S.; Isakov, S.V.; Smelyanskiy, V.N.; Babbush, R.; Ding, N.; Jiang, Z.; Bremner, M.J.; Martinis, J.M.; Neven, H. Characterizing quantum supremacy in near-term devices. Nat. Phys. 2018, 14, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Coppersmith, D. An approximate Fourier transform useful in quantum factoring. arXiv 2002, arXiv:quant-ph/0201067. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum computation and quantum information. Phys. Today 2001, 54, 60. [Google Scholar] [CrossRef] [Green Version]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebentrost, P.; Steffens, A.; Marvian, I.; Lloyd, S. Quantum singular-value decomposition of nonsparse low-rank matrices. Phys. Rev. A 2018, 97, 012327. [Google Scholar] [CrossRef] [Green Version]
- Rebentrost, P.; Schuld, M.; Wossnig, L.; Petruccione, F.; Lloyd, S. Quantum gradient descent and Newton’s method for constrained polynomial optimization. New J. Phys. 2019, 21, 073023. [Google Scholar] [CrossRef]
- Higgott, O.; Wang, D.; Brierley, S. Variational Quantum Computation of Excited States. Quantum 2019, 3, 156. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Prieto, C.; Larose, R.; Cerezo, M.; Subasi, Y.; Cincio, L.; Coles, P. Variational Quantum Linear Solver: A Hybrid Algorithm for Linear Systems. Am. Phys. Soc. 2020, 65, 1. [Google Scholar]
- LaRose, R.; Tikku, A.; O’Neel-Judy, É.; Cincio, L.; Coles, P.J. Variational quantum state diagonalization. NPJ Quantum Inf. 2019, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Arrazola, J.M.; Kalajdzievski, T.; Weedbrook, C.; Lloyd, S. Quantum algorithm for nonhomogeneous linear partial differential equations. Phys. Rev. A 2019, 100, 032306. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.M.; Liu, J.-P. Quantum Spectral Methods for Differential Equations. Commun. Math. Phys. 2020, 375, 1427–1457. [Google Scholar] [CrossRef] [Green Version]
- Fijany, A.; Williams, C.P. Quantum wavelet transforms: Fast algorithms and complete circuits. In Proceedings of the Quantum Computing and Quantum Communications: First NASA International Conference, QCQC’98, Palm Springs, CA, USA, 17–20 February 1998; Springer: Berlin/Heidelberg, Germany, 1999; pp. 10–33. [Google Scholar]
- Klappenecker, A.; Rotteler, M. Discrete cosine transforms on quantum computers. In Proceedings of the ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In Conjunction with 23rd International Conference on Information Technology Interfaces, Pula, Croatia, 19–21 June 2001; pp. 464–468. [Google Scholar]
- Tseng, C.-C.; Hwang, T.-M. Quantum Circuit Design of Discrete Hartley Transform using Recursive Decomposition Formula. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems (ISCAS), Kobe, Japan, 23–26 May 2005; Volume 1, pp. 824–827. [Google Scholar] [CrossRef]
- Mermin, N.D. Quantum mysteries refined. Am. J. Phys. 1994, 62, 880–887. [Google Scholar] [CrossRef]
- Berthiaume, A.; Brassard, G. Oracle Quantum Computing. J. Mod. Opt. 1994, 41, 2521–2535. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Davidovich, L.; Zagury, N. Quantum random walks. Phys. Rev. A 1993, 48, 1687. [Google Scholar] [CrossRef]
- Venegas-Andraca, S.E.; Ball, J.L.; Burnett, K.; Bose, S. Quantum walks with entangled coins. New J. Phys. 2005, 7, 221. [Google Scholar] [CrossRef]
- Parasa, V.; Perkowski, M. Quantum Pseudo-Fractional Fourier Transform Using Multiple-Valued Logic. In Proceedings of the 2012 IEEE 42nd International Symposium on Multiple-Valued Logic, Victoria, BC, Canada, 14–16 May 2012; pp. 311–314. [Google Scholar] [CrossRef]
- Lv, C.-H.; Fan, H.-Y.; Li, D. From fractional Fourier transformation to quantum mechanical fractional squeezing transformation. Chin. Phys. B 2015, 24, 020301. [Google Scholar] [CrossRef]
- Weimann, S.; Perez-Leija, A.; Lebugle, M.; Keil, R.; Tichy, M.; Gräfe, M.; Heilmann, R.; Nolte, S.; Moya-Cessa, H.; Weihs, G.; et al. Implementation of quantum and classical discrete fractional Fourier transforms. Nat. Commun. 2016, 7, 11027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, Y.; Molina, M.; Torres, R. Quantum Fractional Fourier Transform. In Frontiers in Optics; Optica Publishing Group: Washington, DC, USA, 2018. [Google Scholar]
- Zhao, T.; Yang, T.; Chi, Y. Quantum Weighted Fractional Fourier Transform. Mathematics 2022, 10, 1896. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, F.; Wang, Y. Research progress on discretization of fractional Fourier transform. Sci. China Inf. Sci. 2008, 51, 859–880. [Google Scholar] [CrossRef]
- Gómez-Echavarría, A.; Ugarte, J.P.; Tobón, C. The fractional Fourier transform as a biomedical signal and image processing tool: A review. Biocybern. Biomed. Eng. 2020, 40, 1081–1093. [Google Scholar] [CrossRef]
- Shih, C.-C. Fractionalization of Fourier transform. Opt. Commun. 1995, 118, 495–498. [Google Scholar] [CrossRef]
- Liang, Y.; Da, X.; Xu, R.; Ni, L.; Zhai, D.; Pan, Y. Research on Constellation-Splitting Criterion in Multiple Parameters WFRFT Modulations. IEEE Access 2018, 6, 34354–34364. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q. The Weighted Fractional Fourier Transform and Its Application in Image Encryption. Math. Probl. Eng. 2019, 2019, 4789194. [Google Scholar] [CrossRef]
- Zhao, T.; Chi, Y. Multiweighted-Type Fractional Fourier Transform: Unitarity. Fractal Fract. 2021, 5, 205. [Google Scholar] [CrossRef]
- Bracewell, R.N. Discrete hartley transform. JOSA 1983, 73, 1832–1835. [Google Scholar] [CrossRef]
- Gidney, C. Computing Fractional Fourier Transforms. 2017. Available online: https://algassert.com/post/1710 (accessed on 11 June 2017).
- Pang, H. Circuit Construction of Quantum Fractional Fourier Transform. Zhihu. 2022. Available online: https://zhuanlan.zhihu.com/p/489812535 (accessed on 31 March 2022).
- McClellan, J.; Parks, T. Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust. 1972, 20, 66–74. [Google Scholar] [CrossRef]
- Dickinson, B.; Steiglitz, K. Eigenvectors and functions of the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1982, 30, 25–31. [Google Scholar] [CrossRef] [Green Version]
N | 1 | −1 | −i | i |
---|---|---|---|---|
4n | n + 1 | n | n | n − 1 |
4n + 1 | n + 1 | n | n | n |
4n + 2 | n + 1 | n + 1 | n | n |
4n + 3 | n + 1 | n + 1 | n + 1 | n |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Chi, Y. Quantum Weighted Fractional-Order Transform. Fractal Fract. 2023, 7, 269. https://doi.org/10.3390/fractalfract7030269
Zhao T, Chi Y. Quantum Weighted Fractional-Order Transform. Fractal and Fractional. 2023; 7(3):269. https://doi.org/10.3390/fractalfract7030269
Chicago/Turabian StyleZhao, Tieyu, and Yingying Chi. 2023. "Quantum Weighted Fractional-Order Transform" Fractal and Fractional 7, no. 3: 269. https://doi.org/10.3390/fractalfract7030269
APA StyleZhao, T., & Chi, Y. (2023). Quantum Weighted Fractional-Order Transform. Fractal and Fractional, 7(3), 269. https://doi.org/10.3390/fractalfract7030269