Jackson Differential Operator Associated with Generalized Mittag–Leffler Function
Abstract
:1. Introduction
- 1.
- If , then Raina’s function gives the Mittag–Leffler function.
- 2.
- If is the well-known Pochhammer symbol, and , then Raina’s function reduces to the following Gaussian hypergeometric function:
- (i)
- (ii)
- (iii)
- (iv)
2. Estimation Coefficient for the Class
3. Fekete–Szegő Problem Associated with Class
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruscheweyh, S. Convolutions in Geometric Function Theory; Les Presses de L’Université de Montréal: Montréal, QC, Canada, 1982. [Google Scholar]
- Bulboacă, T. Differential Subordinations and Superordinations. New Results; House of Scientific Book Publ.: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Duren, P.L. Univalent Functions, Grundlehren Math. Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Robertson, M.S. Certain classes of starlike functions. Michigan Math. J. 1954, 76, 755–758. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- MacGregor, T.H. Functions whose derivative has a positive real part. Trans. Am. Math. Soc. 1962, 104, 532–537. [Google Scholar] [CrossRef]
- Èzrohi, T.G. Certain Estimates in Special Class of Univalent Functions in the Unit Circle |z| < 1; Dopovidi Akademiï Nauk Ukrain RSR: Kyiv, Ukraine, 1965; pp. 984–988. [Google Scholar]
- Goel, R.M. The radius of convexity and starlikeness for certain classes of analytic functions with fixed second coefficient. Ann. Univ. Mariae-Curie-Sklodowska Soci. 1971, 25, 33–39. [Google Scholar]
- Yamaguchi, K. On functions satisfying Re{f(z)/z} > 0. Proc. Am. Math. Soc. 1966, 17, 588–591. [Google Scholar]
- Chen, M.P. On functions satisfying Re{f(z)/z} > α. Tamkang J. Math. 1974, 5, 231–234. [Google Scholar]
- Chen, M.P. On the regular functions satisfying Re{f(z)/z} > α. Bull. Inst. Math. Acad. Sin. 1975, 3, 65–70. [Google Scholar]
- Goel, R.M. On functions satisfying Re{f(z)/z} > α. Publ. Math. Deprecen 1971, 18, 111–117. [Google Scholar] [CrossRef]
- Owa, S.; Attiya, A.A. An application of differential subordinations to the class of certain analytic functions. Taiwan. J. Math. 2009, 13, 369–375. [Google Scholar] [CrossRef]
- Carathéodory, C. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 1907, 64, 95–115. [Google Scholar] [CrossRef]
- Carathéodory, C. Über den ariabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen. Rend. Circ. Mat. Palermo 1911, 32, 193–217. [Google Scholar] [CrossRef]
- Jackson, F.H. XI.—On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinburgh 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On Q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Attiya, A.A.; Ibrahim, R.W.; Albalahi, A.M.; Ali, E.E.; Bulboaca, T. A differential operator associated with q-Raina function. Symmetry 2022, 14, 1518. [Google Scholar] [CrossRef]
- Ibrahim, R.W. Geometric process solving a class of analytic functions using q-convolution differential operator. J. Taibah Univ. Sci. 2020, 14, 670–677. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions, A generalization of starlike functions, Complex Variables. Theory Appl. 1990, 14, 77–84. [Google Scholar]
- Karthikeyan, K.R.; Lakshmi, S.; Varadharajan, S.; Mohankumar, D.; Umadevi, E. Starlike functions of complex order with respect to symmetric points defined using higher order derivatives. Fractal Fract. 2022, 6, 116. [Google Scholar] [CrossRef]
- Noor, S.; Razzaque, A. New subclass of analytic function involving Mittag-Leffler function in conic domains. J. Funct. Spaces 2022, 2022, 8796837. [Google Scholar] [CrossRef]
- Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On starlike functions of negative order defined by q-fractional derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Mittag-Leffler, G.M. Sur la nouvelle function. C. R. Acad. Sci. 1903, 137, 554–558. [Google Scholar]
- Mittag-Leffler, G.M. Sur la representation analytique d’une function monogene (cinquieme note). Acta Math. 1905, 29, 101–181. [Google Scholar] [CrossRef]
- Wiman, A. Uber den Fundamental Salz in der Theorie der Funktionen. Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the Kernal. Yokohoma Math. J. 1971, 19, 7–15. [Google Scholar]
- Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef]
- Attiya, A.A.; Seoudy, T.M.; Aouf, M.K.; Albalahi, A.M. Certain analytic functions defined by generalized Mittag-Leffler function associated with conic domain. J. Funct. Spaces 2022, 2022, 1688741. [Google Scholar] [CrossRef]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Postnikov, E.B. Mittag-Leffler function as an approximant to the concentrated ferrofluid’s magnetization curve. Fractal Fract. 2021, 5, 147. [Google Scholar] [CrossRef]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kiliçman, A.; Abdulnaby, Z.E.; Ibrahim, R. Generalized convolution properties based on the modified Mittag-Leffler function. J. Nonlinear Sci. Appl. 2017, 10, 4284–4294. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Ruscheweyh, S. A new criteria for univalent function. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple region. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1969, 16, 755–758. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–449. [Google Scholar] [CrossRef]
- Jung, J.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operator. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef]
- Flett, T.M. The dual of inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl. 1972, 38, 746–765. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
- Attiya, A.A.; Hakami, A.H. Some subordination results associated with generalized Srivastava-Attiya operator. Adv. Differ. Equ. 2013, 2013, 105. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Sălăgean, G.S. Subclasses of Univalent Functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981); Lecture Notes in Math; Springer: Berlin, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Bulboacă, T. Sufficient conditions of subclasses of spiral-like functions associated with Mittag-Leffler functions. Kragujev. J. Math. 2024, 48, 21–934. [Google Scholar]
- Kanas, S.; Altınkaya, Ş. Functions of bounded variation related to domains bounded by conic sections. Math. Slovaca 2019, 69, 833–842. [Google Scholar] [CrossRef]
- Kanas, S. Techniques of the differential subordination for domains bounded by conic sections. Int. J. Math. Math. Sci. 2003, 38, 2389–2400. [Google Scholar] [CrossRef]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Conf. Proc. Lecture Notes Anal. I. International Press Inc.: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M. Certain subclass of analytic functions related with conic domains and associated with Sălăgean q-differential operator. AIMS Math 2017, 2, 622–634. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attiya, A.A.; Yassen, M.F.; Albaid, A. Jackson Differential Operator Associated with Generalized Mittag–Leffler Function. Fractal Fract. 2023, 7, 362. https://doi.org/10.3390/fractalfract7050362
Attiya AA, Yassen MF, Albaid A. Jackson Differential Operator Associated with Generalized Mittag–Leffler Function. Fractal and Fractional. 2023; 7(5):362. https://doi.org/10.3390/fractalfract7050362
Chicago/Turabian StyleAttiya, Adel A., Mansour F. Yassen, and Abdelhamid Albaid. 2023. "Jackson Differential Operator Associated with Generalized Mittag–Leffler Function" Fractal and Fractional 7, no. 5: 362. https://doi.org/10.3390/fractalfract7050362
APA StyleAttiya, A. A., Yassen, M. F., & Albaid, A. (2023). Jackson Differential Operator Associated with Generalized Mittag–Leffler Function. Fractal and Fractional, 7(5), 362. https://doi.org/10.3390/fractalfract7050362