Investigation of the Second-Order Hankel Determinant for Sakaguchi-Type Functions Involving the Symmetric Cardioid-Shaped Domain
Abstract
:1. Preliminary Concepts
- (i).
- (ii).
- (iii).
- (iv).
- [46] with for
2. Set of Lemmas
3. Coefficient Bounds for
4. Coefficient Bounds for
5. Logarithmic Coefficients for and
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aleman, A.; Constantin, A. Harmonic maps and ideal fluid flows. Arch. Ration. Mech. Anal. 2012, 204, 479–513. [Google Scholar] [CrossRef]
- Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- Schaeffer, A.C.; Spencer, D.C. The coefficients of schlicht functions. Duke Math. J. 1943, 10, 611–635. [Google Scholar] [CrossRef]
- Löwner, K. Untersuchungen iiber schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 1923, 89, 103–121. [Google Scholar] [CrossRef]
- Jenkins, J.A. On certain coefficients of univalent functions II. Trans. Am. Math. Soc. 1960, 96, 534–545. [Google Scholar] [CrossRef]
- Garabedian, P.R.; Schiffer, M. A proof of the Bieberbach conjecture for the fourth coefficient. J. Rational Mech. Anal. 1955, 4, 428–465. [Google Scholar] [CrossRef]
- Pederson, R.N.; Schiffer, M. A proof of the Bieberbach conjecture for the fifth coefficient. Arch. Ration. Mech. Anal. 1972, 45, 161–193. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Ozawa, M. An elementary proof of the Bieberbach conjecture for the sixth coefficient. Kodai Math. Sem. Rep. 1969, 21, 129–132. [Google Scholar] [CrossRef]
- Pederson, R.N. A proof of the Bieberbach conjecture for the sixth coefficient. Arch. Ration. Mech. Anal. 1968, 31, 331–351. [Google Scholar] [CrossRef]
- De-Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Brown, J.E.; Tsao, A. On the Zalcman conjecture for starlike and typically real functions. Math. Z. 1986, 191, 467–474. [Google Scholar] [CrossRef]
- Li, L.; Ponnusamy, S.; Qiao, J. Generalized Zalcman conjecture for convex functions of order α. Acta Math. Hungar. 2016, 150, 234–246. [Google Scholar] [CrossRef]
- Ma, W.C. The Zalcman conjecture for close-to-convex functions. Proc. Am. Math. Soc. 1988, 104, 741–744. [Google Scholar] [CrossRef]
- Krushkal, S.L. Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J. 2010, 17, 663–681. [Google Scholar] [CrossRef]
- Krushkal, S.L. A short geometric proof of the Zalcman and Bieberbach conjectures. arXiv 2014, arXiv:1408.1948. [Google Scholar]
- Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328–339. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Dienes, P. The Taylor Series; Dover: New York, NY, USA, 1957. [Google Scholar]
- Cantor, D.G. Power series with integral coefficients. Bull. Am. Math. Soc. 1963, 69, 362–366. [Google Scholar] [CrossRef]
- Edrei, A. Sur les determinants recurrents et less singularities díune fonction donee por son developpement de Taylor. Compos. Math. 1940, 7, 20–88. [Google Scholar]
- Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 3, 77–94. [Google Scholar] [CrossRef]
- Obradović, M.; Tuneski, N. Hankel determinants of second and third order for the class S of univalent functions. Math. Slovaca. 2021, 71, 649–654. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. 2007, 1, 619–625. [Google Scholar]
- Altınkaya, Ş.; Yalçın, S. Upper bound of second Hankel determinant for bi-Bazilevic functions. Mediterr. J. Math. 2016, 13, 4081–4090. [Google Scholar] [CrossRef]
- Bansal, D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 2013, 26, 103–107. [Google Scholar] [CrossRef]
- Çaglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turkish J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
- Ebadian, A.; Bulboacă, T.; Cho, N.E.; Adegani, E.A. Coefficient bounds and differential subordinations for analytic functions associated with starlike functions. Rev. Real Acad. Exactas Fís. Nat. Ser. A Mat. 2020, 114, 128. [Google Scholar] [CrossRef]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Ineq. Appl. 2013, 2013, 281. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Thomas, D.K. The sharp bound of the third Hankel determinant for starlike functions. Forum Math. 2022, 34, 1249–1254. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Ullah, K.; Alreshidi, N.; Shutaywi, M. On sharp estimate of third Hankel determinant for a subclass of starlike functions. Fractal Fract. 2022, 6, 437. [Google Scholar] [CrossRef]
- Shi, L.; Shutaywi, M.; Alreshidi, N.; Arif, M.; Ghufran, S.M. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain. Fractal Fract. 2022, 6, 223. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants for a subclass of analytic functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis. International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. [Google Scholar]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclassof strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Ullah, K.; Srivastava, H.M.; Rafiq, A.; Darus, M.; Shutaywi, M. Radius problems for starlike functions associated with the tan hyperbolic function. J. Funct. Spaces 2021, 2022, 9967640. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2020, 47, 1513–1532. [Google Scholar] [CrossRef]
- Arora, K.; Kumar, S.S. Starlike functions associated with a petal shaped domain. Bull. Korean Math. Soc. 2022, 59, 993–1010. [Google Scholar]
- Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Gupta, P.; Nagpal, S.; Ravichandran, V. Inclusion relations and radius problems for a subclass of starlike functions. J. Korean Math. Soc. 2021, 58, 1147–1180. [Google Scholar]
- Gandhi, S.; Gupta, P.; Nagpal, S.; Ravichandran, V. Starlike functions associated with an Epicycloid. Hacet. J. Math. Stat. 2022, 51, 1637–1660. [Google Scholar] [CrossRef]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Das, R.N.; Singh, P. On subfamily of Schlicht mapping. Indian Pure Appl. Math. 1977, 8, 864–872. [Google Scholar]
- Yahya, A.; Soh, S.C.; Mohamad, D. Second Hankel determinant for a class of a generalised Sakaguchi class of analytic functions. Int. J. Math. Anal. 2013, 7, 1601–1608. [Google Scholar] [CrossRef]
- Ullah, K.; Al-Shbeil, I.; Faisal, M.I.; Arif, M.; Alsaud, H. Results on second-order Hankel determinants for convex functions with symmetric points. Symmetry 2023, 15, 939. [Google Scholar] [CrossRef]
- Omer, S.O.; Aamir, M.; Bilal, M.; Ullah, K.; Qadir, A. Study of second-order Hankel determinant for starlike functions with respect to symmetric points. VFAST Trans. Math. 2023, 11, 52–66. [Google Scholar]
- Yong, S.; Wang, Z.-G. Sharp bounds on Hermitian Toeplitz determinants for Sakaguchi classes. Bull. Malays. Sci. Soc. 2023, 46, 59. [Google Scholar]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α,β) -convex functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1981, 35, 125–143. [Google Scholar]
- Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 49. [Google Scholar] [CrossRef]
- Carlson, F. Sur les Coefficients D’une Fonction Bornée Dans Le Cercle Unité; Almqvist Wiksell: Stockholm, Sweden, 1940. [Google Scholar]
- Zaprawa, P. On coefficient problems for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2022, 28, 17. [Google Scholar] [CrossRef]
- Efraimidis, I. A generalization of Livingston’s coefficient inequalities for functions with positive real part. J. Math. Anal. Appl. 2016, 435, 369–379. [Google Scholar] [CrossRef]
- Avkhadiev, F.G.; Wirths, K.J. Schwarz-Pick Type Inequalities; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- FitzGerald, C.H.; Pommerenke, C. The de-Branges theorem on univalent functions. Trans. Am. Math. Soc. 1985, 290, 683–690. [Google Scholar] [CrossRef]
- FitzGerald, C.H.; Pommerenke, C. A theorem of de-Branges on univalent functions. Serdica 1987, 13, 21–25. [Google Scholar]
- Kayumov, I.P. On Brennan’s conjecture for a special class of functions. Math. Notes 2005, 78, 498–502. [Google Scholar] [CrossRef]
- Alimohammadi, D.; Analouei Adegani, E.; Bulboaca, T.; Cho, N.E. Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions. J. Funct. Spaces 2021, 2021, 6690027. [Google Scholar] [CrossRef]
- Deng, Q. On the logarithmic coefficients of Bazilevic functions. Appl. Math. Comput. 2011, 217, 5889–5894. [Google Scholar] [CrossRef]
- Roth, O. A sharp inequality for the logarithmic coefficients of univalent functions. Proc. Am. Math. Soc. 2007, 135, 2051–2054. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2022, 105, 458–467. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2022, 45, 727–740. [Google Scholar] [CrossRef]
- Mohammed, N.H. Sharp bounds of logarithmic coefficient problems for functions with respect to symmetric points. Mat. Stud. 2023, 59, 68–75. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp bounds of Hankel determinant on logarithmic coefficients for functions starlike with exponential function. Fractal Fract. 2022, 6, 645. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Aldawish, I.; Arif, M.; Abbas, M.; El-Deeb, S. Estimation of the second-order Hankel determinant of logarithmic coefficients for two subclasses of starlike functions. Symmetry 2022, 14, 2039. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Arif, M.; Liu, Z.H.; Zainab, S.; Fayyaz, R.; Ihsan, M.; Shutaywi, M. Sharp bounds of Hankel determinants for certain subclass of starlike functions. J. Appl. Anal. Comput. 2023, 13, 860–873. [Google Scholar] [CrossRef]
- Zaprawa, P. Initial logarithmic coefficients for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2021, 27, 62. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, K.; Arif, M.; Aldawish, I.M.; El-Deeb, S.M. Investigation of the Second-Order Hankel Determinant for Sakaguchi-Type Functions Involving the Symmetric Cardioid-Shaped Domain. Fractal Fract. 2023, 7, 376. https://doi.org/10.3390/fractalfract7050376
Ullah K, Arif M, Aldawish IM, El-Deeb SM. Investigation of the Second-Order Hankel Determinant for Sakaguchi-Type Functions Involving the Symmetric Cardioid-Shaped Domain. Fractal and Fractional. 2023; 7(5):376. https://doi.org/10.3390/fractalfract7050376
Chicago/Turabian StyleUllah, Khalil, Muhammad Arif, Ibtisam Mohammed Aldawish, and Sheza M. El-Deeb. 2023. "Investigation of the Second-Order Hankel Determinant for Sakaguchi-Type Functions Involving the Symmetric Cardioid-Shaped Domain" Fractal and Fractional 7, no. 5: 376. https://doi.org/10.3390/fractalfract7050376
APA StyleUllah, K., Arif, M., Aldawish, I. M., & El-Deeb, S. M. (2023). Investigation of the Second-Order Hankel Determinant for Sakaguchi-Type Functions Involving the Symmetric Cardioid-Shaped Domain. Fractal and Fractional, 7(5), 376. https://doi.org/10.3390/fractalfract7050376