The Properties of Meromorphic Multivalent q-Starlike Functions in the Janowski Domain
Abstract
:1. Introduction and Definitions
2. Main Results
2.1. Sufficient Condition
2.2. Distortion Inequalities
2.3. Partial Sums for the Function Class
2.4. Partial Sums for the Function Class
2.5. Radius of Starlikeness
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ismail, M.E.-H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Amer. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Uma, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. Rev. De La Real Acad. De Cienc. Exactas Fis. Y Naturales. Ser. A. Mat. 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Ur Rehman, M.S.; Ahmad, Q.Z.; Al-shbeil, I.; Ahmad, S.; Khan, A.; Khan, B.; Gong, J. Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains. Axioms 2022, 11, 494. [Google Scholar] [CrossRef]
- Sharma, S.K.; Jain, R. On some properties of generalized q-Mittag Leffler function. Math. Aeterna 2014, 4, 613–619. [Google Scholar]
- Al-shbeil, I.; Gong, J.; Shaba, T.G. Coefficients Inequalities for the Bi-Univalent Functions Related to q-Babalola Convolution Operator. Fractal Fract. 2023, 7, 155. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions. Fractal Fract. 2022, 6, 658. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Clune, J. On meromorphic schlicht functions. J. Lond. Math. Soc. 1959, 34, 215–216. [Google Scholar] [CrossRef]
- Pommerenke, C. On meromorphic starlike functions. Pac. J. Math. 1963, 13, 221–235. [Google Scholar] [CrossRef]
- Royster, W.C. Meromorphic starlike multivalent functions. Trans. Am. Math. Soc. 1963, 107, 300–308. [Google Scholar] [CrossRef]
- Miller, J.E. Convex meromorphic mappings and related functions. Proc. Am. Math. Soc. 1970, 25, 220–228. [Google Scholar] [CrossRef]
- Cho, N.E.; Owa, S. Partial sums of certain meromorphic functions. J. Inequal. Pure Appl. Math. 2004, 5, 30. [Google Scholar]
- Aouf, M.K.; Silverman, H. Partial sums of certain meromorphic p-valent functions. J. Inequal. Pure Appl. Math. 2006, 7, 116. [Google Scholar]
- Srivastava, H.M.; Hossen, H.M.; Aouf, M.K. A unified presentation of some classes of meromorphically multivalent functions. Comput. Math. Appl. 1999, 38, 63–70. [Google Scholar]
- Frasin, B.A.; Darus, M. On certain meromorphic functions with positive coefficients. Southeast Asian Bull. Math. 2004, 28, 615–623. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019, 88. [Google Scholar] [CrossRef]
- Ali, R.M.; Ravichandran, V. Classes of meromorphic alpha-convex functions. Taiwan J. Math. 2010, 14, 1479–1490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shbeil, I.; Gong, J.; Ray, S.; Khan, S.; Khan, N.; Alaqad, H. The Properties of Meromorphic Multivalent q-Starlike Functions in the Janowski Domain. Fractal Fract. 2023, 7, 438. https://doi.org/10.3390/fractalfract7060438
Al-Shbeil I, Gong J, Ray S, Khan S, Khan N, Alaqad H. The Properties of Meromorphic Multivalent q-Starlike Functions in the Janowski Domain. Fractal and Fractional. 2023; 7(6):438. https://doi.org/10.3390/fractalfract7060438
Chicago/Turabian StyleAl-Shbeil, Isra, Jianhua Gong, Samrat Ray, Shahid Khan, Nazar Khan, and Hala Alaqad. 2023. "The Properties of Meromorphic Multivalent q-Starlike Functions in the Janowski Domain" Fractal and Fractional 7, no. 6: 438. https://doi.org/10.3390/fractalfract7060438
APA StyleAl-Shbeil, I., Gong, J., Ray, S., Khan, S., Khan, N., & Alaqad, H. (2023). The Properties of Meromorphic Multivalent q-Starlike Functions in the Janowski Domain. Fractal and Fractional, 7(6), 438. https://doi.org/10.3390/fractalfract7060438