Identification of Fractional Models of an Induction Motor with Errors in Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Statement
2.2. GTLS Algorithm for Identification of Induction Motor
3. Simulation Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toliyat, H.A.; Levi, E.; Raina, M. A review of RFO induction motor parameter estimation techniques. IEEE Trans. Energy Convers. 2003, 18, 271–283. [Google Scholar] [CrossRef]
- Zhan, X.; Zeng, G.; Liu, J.; Wang, O.; Ou, S. A Review on Parameters Identification Methods for Asynchronous Motor. Int. J. Adv. Comput. Sci. Appl. 2015, 6, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Yang, Y.; Blaabjerg, F.; Chen, J.; Diao, L.; Liu, Z. Parameter Identification of Inverter-Fed Induction Motors: A Review. Energies 2018, 11, 2194. [Google Scholar] [CrossRef] [Green Version]
- Stephan, J.; Bodson, M.; Chiasson, J. Real-time estimation of the parameters and fluxes of induction motors. IEEE Trans. Ind. Electron. 1994, 30, 746–759. [Google Scholar] [CrossRef]
- Cirrincione, M.; Pucci, M. Experimental verification of a technique for the real-time identification of induction motors based on the recursive least-squares. In Proceedings of the International Workshop on Advanced Motion Control. Proceedings (Cat. No. 02TH8623), Maribor, Slovenia, 3–5 July 2002; pp. 326–334. [Google Scholar]
- Alonge, F.; D’Ippolito, F.; Barbera, S.L.; Raimondi, F.M. Parameter identification of a mathematical model of induction motors via least squares techniques. In Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No. 98CH36104), Trieste, Italy, 1–4 September 1998; pp. 491–496. [Google Scholar]
- Cirrincione, M.; Pucci, M.; Vitale, G. Power Converters and AC Electrical Drives with Linear Neural Networks; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK , 2012. [Google Scholar]
- Moons, C.; De Moor, B. Parameter identification of induction motor drives. Automatica 1995, 31, 1137–1147. [Google Scholar] [CrossRef]
- Cirrincione, M.; Cirrincione, G.; Pucci, M.; Jaafari, A. The estimation of the induction motor parameters by the GeTLS EXIN neuron. In 2010 IEEE Energy Conversion Congress and Exposition; IEEE: Piscataway, NJ, USA, 2010; pp. 1680–1685. [Google Scholar]
- Cirrincione, G.; Cirrincione, M. Neural Based Orthogonal Data Fitting: The EXIN Neural Networks Series: Adaptive and Learning Systems for Signal Processing, Communications and Control; Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Ivanov, D.V.; Sandler, E.A.; Chertykovtseva, N.V.; Tikhomirov, E.A.; Semenova, N.S. Identification of induction motor parameters with measurement errors. IOP Conf. Ser. Mater. Sci. Eng. 2019, 560, 012163. [Google Scholar] [CrossRef]
- Ivanov, D.V.; Sandler, I.L.; Chertykovtseva, N.V. Generalized total least squares for identification of electromagnetic parameters of an induction motor. IOP J. Phys. Conf. Ser. 2021, 2032, 012093. [Google Scholar] [CrossRef]
- Canay, I. Causes of Discrepancies on Calculation of Rotor Quantities and Exact Equivalent Diagrams of the Synchronous Machines. IEEE Trans. Power Appar. Syst. 1969; PAS-88, 1114–1645. [Google Scholar]
- Staszak, J. Solid-Rotor Induction Motor Modeling Based on Circuit Model Utilizing Fractional-Order Derivatives. Energies 2022, 15, 6371. [Google Scholar] [CrossRef]
- Kabbaj, H.; Roboam, X.; Lefevre, Y.; Faucher, J. Skin effect characterization in a squirrel cage induction machine. In Proceedings of the ISIE’97 Proceeding of the IEEE International Symposium on Industrial Electronics, Guimaraes, Portugal, 7–11 July 1997; Volume 2, pp. 532–536. [Google Scholar] [CrossRef]
- Saleem, A.; Soliman, H.; Al-Ratrout, S.; Mesbah, M. Design of a fractional order PID controller with application to an induction motor drive. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 2768–2778. [Google Scholar] [CrossRef]
- Adigintla, S.; Aware, M.V. Position Control of the Induction Motor using Fractional Order Controllers. In Proceedings of the 2020 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, India, 17–19 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, X. Model-Free Fractional-Order Sliding Mode Control of Electric Drive System Based on Nonlinear Disturbance Observer. Fractal Fract. 2022, 6, 603. [Google Scholar] [CrossRef]
- Nosheen, T.; Ali, A.; Chaudhry, M.U.; Nazarenko, D.; Shaikh, I.u.H.; Bolshev, V.; Iqbal, M.M.; Khalid, S.; Panchenko, V. A Fractional Order Controller for Sensorless Speed Control of an Induction Motor. Energies 2023, 16, 1901. [Google Scholar] [CrossRef]
- John, D.A.; Sehgal, S.; Biswas, K. Hardware Implementation and Performance Study of Analog PIλDμ Controllers on DC Motor. Fractal Fract. 2020, 4, 34. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, R.; Luo, Y.; Chen, Y.; Wang, X.; Chen, Y. A Look-Up Table Based Fractional Order Composite Controller Synthesis Method for the PMSM Speed Servo System. Fractal Fract. 2022, 6, 47. [Google Scholar] [CrossRef]
- Kabbaj, H. Identification d’un Modèle Type Circuit Prenant en Compte les Effets de Fréquences dans une Machine Asynchrone à Cage D’écureuil. Ph.D. Thesis, INPT, Toulouse, France, 1997. [Google Scholar]
- Trigeassou, J.C.; Poinot, T.; Lin, J.; Oustaloup, A.; Levron, F. Modelling and identification of a non integer order system. In Proceedings of the 1999 European Control Conference (ECC), Karlsruhe, Germany, 31 August–3 September 1999. [Google Scholar]
- Benchellal, A.; Poinot, T.; Trigeassou, J.C. Approximation and identification of diffusive interfaces by fractional models. Signal Process. 2006, 86, 2712–2727. [Google Scholar] [CrossRef]
- Canat, S.; Faucher, J. Modelling and simulation of induction machine with fractional derivative. In Proceedings of the IProc FDA’04, Bordeaux, France, 19–20 July 2004; pp. 393–399. [Google Scholar]
- Jalloul, A.; Trigeassou, J.K.; Jelassi, K.; Melchior, P. Fractional Order of Rotor Skin Effect in Induction Machines. Nonlinear Dyn. 2013, 73, 801–813. [Google Scholar] [CrossRef]
- Bachir, S.; Tnani, S.; Trigeassou, J.-C.; Champenois, G. Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines. IEEE Trans. Ind. Electron. 2006, 53, 963–973. [Google Scholar] [CrossRef]
- Slemon, G.R. Modelling of induction machines for electric drives. IEEE Trans. Ind. Appl. 1989, 25, 1126–1131. [Google Scholar] [CrossRef]
- Victor, S.; Malti, R.; Garnier, H.; Oustaloup, A. Parameter and differentiation order estimation in fractional models. Automatica 2013, 49, 926–935. [Google Scholar] [CrossRef]
- Van Huffel, S.; Vandewalle, J. Analysis and properties of the generalized total least squares problem AX ≈ B when some or all columns in A are subject to error. SIAM J. Matrix Anal. Appl. 1989, 10, 294–315. [Google Scholar] [CrossRef]
- Zhdanov, A.I. The solution of ill-posed stochastic linear algebraic equations by the maximum likelihood regularization method. USSR Comput. Math. Math. Phys. 1988, 28, 93–96. [Google Scholar] [CrossRef]
- Ivanov, D.; Zhdanov, A. Symmetrical Augmented System of Equations for the Parameter Identification of Discrete Fractional Systems by Generalized Total Least Squares. Mathematics 2021, 9, 3250. [Google Scholar] [CrossRef]
- Tepljakov, A. FOMCON: Fractional-Order Modeling and Control Toolbox. In Fractional-Order Modeling and Control of Dynamic Systems; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Golub, G.H.; Hansen, P.C.; O’Leary, D.P. Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 1999, 21, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D.; Zhdanov, A. Implicit iterative algorithm for solving regularized total least squares problems. Vestn. Samar. Gos. Tekhnicheskogo Univ. Seriya Fiz.-Mat. Nauk. 2022, 26, 311–321. [Google Scholar] [CrossRef]
- Riu, D.; Retière, N.; Ivanès, M. Diffusion phenomenon modelling by half-order systems: Application to squirrel-cage induction machine. J. Magn. Magn. Mater. 2002, 242–245, 1243–1245. [Google Scholar] [CrossRef]
- Machado, T.; Galhano, J.A. Fractional order inductive phenomena based on the skin effect. Nonlinear Dyn. 2012, 68, 107–115. [Google Scholar] [CrossRef]
7.7348 | 1.5701 | |||
0.2140 | 0.2111 | 1.3780 | 0.2207 | 3.1084 |
0,0175 | 0.0183 | 4.4481 | 98.9797 | |
0.0166 | 0.0162 | 2.5177 | 0.173 | 3.8664 |
0.0018 | 0.0021 | 16.6910 | 83.5653 | |
0.1050 | 0.1047 | 0.3104 | 0.1047 | 0.3398 |
9.52 | 9.5496 | 0.3114 | 9.5525 | 0.3409 | |
0.53 | 0.5368 | 1.2863 | 0.5316 | 0.2928 | |
57.03 | 62.4117 | 9.4336 | 56.1215 | 1.5930 | |
17.04 | 5.6653 | 28.4394 | 17.4248 | 2.2584 | |
0.8 | 0.8134 | 1.6750 | 0.8012 | 0.150 |
3.1195 | 0.0708 | |||
0.0100 | 0.4765 | 0.0100 | 0.0238 | |
0.0175 | 0.0151 | 13.8781 | 0.0164 | 6.4449 |
0.2140 | 0.2151 | 0.5211 | 0.2151 | 0.4967 |
0.1597 | 0.1590 | 0.4185 | 0.1601 | 0.2315 |
2.7572 | 0.7486 | |||
898.76 | 68.453 | |||
0.0166 | 0.0176 | 5.6452 | 0.0167 | 0.4351 |
0.0168 | 0.0167 | 0.2109 | 0.0168 | 0.02053 |
0.1050 | 0.1051 | 0.1050 |
9.52 | 9.5206 | 0.0065 | 9.5199 | 0.0049 | |
0.53 | 0.5280 | 0.3726 | 0.5301 | 0.0269 | |
57.04 | 58.6432 | 2.8287 | 57.0057 | 0.0427 | |
9.11 | 9.3285 | 2.3998 | 9.1272 | 0.1888 | |
17.04 | 18.5816 | 9.0469 | 17.1035 | 0.3724 | |
0.12 | 0.1264 | 5.3507 | 0.1172 | 2.3531 | |
0.45 | 0.445 | 1.1111 | 0.449 | 0.2222 |
200.02 | 1.9783 | |||
0.0853 | 0.0890 | 4.2894 | 0.0851 | 0.2677 |
0.6806 | 0.710 | 4.3891 | 0.6810 | 0.0539 |
1.5329 | 1.7989 | 17.3489 | 1.5425 | 0.6201 |
0.0656 | 0.0669 | 1.9870 | 0.0655 | 0.1878 |
0.1610 | 0.1904 | 18.2696 | 0.1622 | 0.7486 |
0.1050 | 0.1044 | 0.5747 | 0.1049 | 0.1136 |
9.52 | 9.5206 | 0.3584 | 9.5308 | 0.1137 | |
0.53 | 0.4281 | 19.2259 | 0.5247 | 1.0108 | |
0.85 | 1.2154 | 42.3944 | 0.8506 | 0.0744 | |
0.0012 | 0.0015 | 28.4394 | 0.0012 | 0.9381 | |
1.3030 | 1.5407 | 18.2424 | 1.3152 | 1.7956 | |
0.45 | 0.442 | 1.1778 | 0.451 | 0.222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, D. Identification of Fractional Models of an Induction Motor with Errors in Variables. Fractal Fract. 2023, 7, 485. https://doi.org/10.3390/fractalfract7060485
Ivanov D. Identification of Fractional Models of an Induction Motor with Errors in Variables. Fractal and Fractional. 2023; 7(6):485. https://doi.org/10.3390/fractalfract7060485
Chicago/Turabian StyleIvanov, Dmitriy. 2023. "Identification of Fractional Models of an Induction Motor with Errors in Variables" Fractal and Fractional 7, no. 6: 485. https://doi.org/10.3390/fractalfract7060485
APA StyleIvanov, D. (2023). Identification of Fractional Models of an Induction Motor with Errors in Variables. Fractal and Fractional, 7(6), 485. https://doi.org/10.3390/fractalfract7060485