Multicorn Sets of via S-Iteration with h-Convexity
Abstract
:1. Introduction
2. Preliminaries
3. Escape Criterion of in S-Iteration with -Convexity
4. Graphical Examples
5. Numerical Simulations and Discussion
- for a;
- for m.
- for ,
- for m.
- For and , image execution times belong to (13 s, 15 s);
- For and , image execution times belong to (10 s, 30 s);
- For and , image execution times belong to (38 s, 50 s];
- For and , image execution times belong to (27 s, 34 s);
- For and , image execution times belong to (30 s, 50 s].
- for ,
- for m.
- For and , image execution times belong to (30 s, 42.573 s];
- For and , image execution times belong to [0.013 s, 3.87 s).
6. Conclusions
Algorithm 1 Multicorn set generation |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, R.P. The Potential of Biophilic Fractal Designs to Promote Health and Performance: A Review of Experiments and Applications. Sustainability 2021, 13, 823. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saad, K.M.; Hamanah, W.M. Certain new models of the multi-space fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations. Mathematics 2022, 10, 1089. [Google Scholar] [CrossRef]
- Kumar, S. Public Key Cryptographic System Using Mandelbrot Sets. In Proceedings of the MILCOM 2006–2006 IEEE Military Communications Conference, Washington, DC, USA, 23–25 October 2006; pp. 1–5. [Google Scholar]
- Zhang, X.; Wang, L.; Zhou, Z.; Niu, Y. A chaos-based image encryption technique utilizing Hilbert curves and H-Fractals. IEEE Access 2019, 7, 74734–74746. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, L.; Xu, R.; Kong, R. An image encryption algorithm utilizing Julia sets and Hilbert curves. PLoS ONE 2014, 9, e84655. [Google Scholar] [CrossRef] [PubMed]
- Fisher, Y. Fractal image compression. Fractals 1994, 2, 347–361. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-A.; Bai, W.-L.; Liu, G.-C.; Li, W.-H.; Srivastava, H.M. Parallel fractal compression method for big video data. Complexity 2018, 2018, 2016976. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-A.; Xu, X.-Y.; Srivastava, G.; Srivastava, H.M. Fractal properties of the generalized Mandelbrot set with complex exponent. Fractals 2023, 31, 0218-348X. [Google Scholar] [CrossRef]
- Tassaddiq, A. General escape criteria for the generation of fractals in extended Jungck–Noor orbit. Math. Comput. Simul. 2022, 196, 1–14. [Google Scholar] [CrossRef]
- Barnsley, M. Fractals Everywhere; Academic: Boston, MA, USA, 1993. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry Nature; Freeman: New York, NY, USA, 1982; Volume 2. [Google Scholar]
- Lakhtakia, A.; Varadan, W.; Messier, R.; Varadan, V.K. On the symmetries of the Julia sets for the process zp + c. J. Phys. A Math. Gen. 1987, 20, 3533–3535. [Google Scholar] [CrossRef]
- Blanchard, P.; Devaney, R.L.; Garijo, A.; Russell, E.D. A generalized version of the Mcmullen domain. Int. J. Bifurc. Chaos 2008, 18, 2309–2318. [Google Scholar] [CrossRef] [Green Version]
- Crowe, W.D.; Hasson, R.; Rippon, P.J.; Strain-Clark, P.E.D. On the structure of the Mandelbar set. Nonlinearity 1989, 2, 541. [Google Scholar] [CrossRef]
- Milnor, J.W. Dynamics in one complex variable Introductory lectures. arXiv 1990, arXiv:math/9201272. [Google Scholar]
- Alexander, C.; Giblin, I.; Newton, D. Symmetry groups of fractals. Math. Intell. 1992, 14, 32–38. [Google Scholar] [CrossRef]
- Lau, E.; Schleicher, D. Symmetries of fractals revisited. Math. Intell. 1996, 18, 45–51. [Google Scholar] [CrossRef]
- Nakane, S.; Schleicher, D. On multicorns and unicorns i: Antiholomorphic dynamics, hyperbolic components and real cubic polynomials. Int. J. Bifurc. Chaos 2003, 13, 2825–2844. [Google Scholar] [CrossRef] [Green Version]
- Devaney, R. A First Course in Chaotic Dynamical Systems. In Theory and Experiment; Addison-Wesley: New York, NY, USA, 1992. [Google Scholar]
- Liu, X.; Zhu, Z.; Wang, G.; Zhu, W. Composed accelerated escape time algorithm to construct the general Mandelbrot sets. Fractals 2001, 9, 149–153. [Google Scholar] [CrossRef]
- Kang, S.M.; Rafiq, A.; Latif, A.; Shahid, A.A.; Kwun, Y.C. Tricorns and multicorns of S-iteration scheme. J. Function Spaces 2015, 2015, 417167. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, M.; Nazeer, W.; Gdawiec, K. On the Mandelbrot set of zp + logct via the Mann and Picard–Mann iterations. In Mathematics and Computers in Simulation; Elsevier: Amsterdam, The Netherlands, 2023; Volume 209, pp. 184–204. [Google Scholar]
- Barrallo, J.; Jones, D.M. Coloring Algorithms for Dynamical Systems in the Complex Plane. In Visual Mathematics; Mathematical Institute SASA: Belgrade, Serbia, 1999; Volume 4, no. 4. [Google Scholar]
- Kumari, S.; Gdawiec, K.; Nandal, A.; Postolache, M.; Chugh, R. A Novel Approach to Generate Mandelbrot Sets, Julia Sets and Biomorphs via Viscosity Approximation Method. Chaos Solitons Fractals 2022, 163, 112540. [Google Scholar] [CrossRef]
- Shahid, A.A.; Nazeer, W.; Gdawiec, K. The Picard–Mann Iteration with s-convexity in the Generation of Mandelbrot and Julia Sets. Monatshefte Math. 2021, 195, 565–585. [Google Scholar] [CrossRef]
- Qiao, L.; Xu, D. A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation. Adv. Comput. Math. 2021, 47, 64. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Chand, A.B.; Kumar, G.S. A new class of rational cubic spline fractal interpolation function and its constrained aspects. Appl. Math. Comput. 2019, 346, 319–335. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A.; Tanveer, M.; Israr, K.; Arshad, M.; Shehzad, K.; Srivastava, R.
Multicorn Sets of
Tassaddiq A, Tanveer M, Israr K, Arshad M, Shehzad K, Srivastava R.
Multicorn Sets of
Tassaddiq, Asifa, Muhammad Tanveer, Khuram Israr, Muhammad Arshad, Khurrem Shehzad, and Rekha Srivastava.
2023. "Multicorn Sets of
Tassaddiq, A., Tanveer, M., Israr, K., Arshad, M., Shehzad, K., & Srivastava, R.
(2023). Multicorn Sets of