A Time Two-Mesh Finite Difference Numerical Scheme for the Symmetric Regularized Long Wave Equation
Abstract
:1. Introduction
2. Notations and Some Lemmas
3. The TT-M Finite Difference Scheme
4. Convergence Analysis and Stability of the TT-M Finite Difference Scheme
5. Numerical Results
5.1. Error and Convergence Rate
5.2. Conservative Approximations
5.3. Long-Time Simulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peregrine, D.H. Calculations of the development of an undular bore. J. Fluid Mech. 1966, 25, 321–330. [Google Scholar] [CrossRef]
- Peregrine, D.H. Long waves on beach. J. Fluid Mech. 1967, 27, 815–827. [Google Scholar] [CrossRef]
- Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 1895, 39, 422–443. [Google Scholar] [CrossRef]
- Seyler, C.E.; Fenstermacher, D.L. A symmetric regularized-long-wave equation. Phys. Fluids 1984, 27, 4–7. [Google Scholar] [CrossRef]
- Fang, S.; Guo, B.; Qiu, H. The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 61–68. [Google Scholar]
- Xu, F. Application of Exp-function method to symmetric regularized long wave (SRLW) equation. Phys. Lett. A 2008, 372, 252–257. [Google Scholar] [CrossRef]
- Abazari, R. Application of (G′/G)-expansion method to travelling wave solutions of three nonlinear evolution equation. Comput. Fluids 2010, 39, 1957–1963. [Google Scholar] [CrossRef]
- Chand, F.; Malik, A.K. Exact traveling wave solutions of some nonlinear equations using(G′/G)-expansion method. Int. J. Nonlinear Sci. 2012, 14, 416–424. [Google Scholar]
- Yalçınkaya, İ.; Ahmad, H.; Tasbozan, O.; Kurt, A. Soliton solutions for time fractional ocean engineering models with Beta derivative. J. Ocean Eng. Sci. 2022, 7, 444–448. [Google Scholar] [CrossRef]
- Mamun, A.A.; Ananna, S.N.; An, T.; Shahen, N.H.M.; Asaduzzaman, M. Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics. Heliyon 2021, 7, e07704. [Google Scholar] [CrossRef]
- Hussain, A.; Jhangeer, A.; Abbas, N.; Khan, I.; Nisar, K.S. Solitary wave patterns and conservation laws of fourth-order nonlinear symmetric regularized long-wave equation arising in plasma. Ain Shams Eng. J. 2021, 12, 3919–3930. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Ali, A. Applications of exact traveling wave solutions of modified Liouville and the symmetric regularized long wave equations via two new techniques. Results Phys. 2018, 9, 1403–1410. [Google Scholar] [CrossRef]
- Manafian, J.; Zamanpour, I. Exact travelling wave solutions of the symmetric regularized long wave (SRLW) using analytical methods. Stat. Optim. Inf. Comput. 2014, 2014, 47–55. [Google Scholar]
- Sendi, C.T.; Manafian, J.; Mobasseri, H.; Mirzazadeh, M.; Zhou, Q.; Bekir, A. Application of the ITEM for solving three nonlinear evolution equations arising in fluid mechanics. Nonlinear Dyn. 2019, 95, 669–684. [Google Scholar] [CrossRef]
- Bekir, A. New solitons and periodic wave solutions for some nonlinear physical models by using the sine–cosine method. Phys. Scr. 2008, 77, 045008. [Google Scholar] [CrossRef]
- Guo, B. The spectral method for symmetric regularized wave equations. J. Comput. Math. 1987, 5, 297–306. [Google Scholar]
- Zheng, J.; Zhang, R.; Guo, B. The Fourier pseudo-spectral method for the SRLW equation. Appl. Math. Mech. 1989, 10, 801–810. [Google Scholar]
- Wang, T.C.; Zhang, L.M.; Chen, F.Q. Conservative schemes for the symmetric regularized long wave equations. Appl. Math. Comput. 2007, 190, 1063–1080. [Google Scholar] [CrossRef]
- Yimnet, S.; Wongsaijai, B.; Rojsiraphisal, T.; Poochinapan, K. Numerical implementation for solving the symmetric regularized long wave equation. Appl. Math. Comput. 2016, 273, 809–825. [Google Scholar] [CrossRef]
- Hu, J.S.; Zheng, K.L.; Zheng, M.B. Numerical simulation and convergence analysis of high-order conservative difference scheme for SRLW equation. Appl. Math. Model. 2014, 38, 5573–5581. [Google Scholar] [CrossRef]
- Li, S.G. Numerical study of a conservative weighted compact difference scheme for the symmetric regularized long wave equations. Numer. Methods Partial. Differ. Equ. 2019, 35, 60–83. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Zhang, L.M. A conservative finite difference scheme for symmetric regularized long wave equations. Acta Math. Appl. Sin. 2007, 30, 248–255. [Google Scholar]
- Xu, Y.C.; Hu, B.; Xie, X.P.; Hu, J.S. Mixed finite element analysis for dissipative SRLW equations with damping term. Phys. Fluids 2012, 218, 4788–4797. [Google Scholar] [CrossRef]
- He, Y.Y.; Wang, X.F.; Cheng, H.; Deng, Y.Q. Numerical analysis of a high-order accurate compact finite difference scheme for the SRLW equation. Appl. Math. Comput. 2022, 418, 126837. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.D.; Li, H.; Liu, F.W.; Wang, J.F. Time two-mesh algorithm combined with finite element method for time fractional water wave model. Int. J. Heat Mass Transf. 2018, 120, 1132–1145. [Google Scholar] [CrossRef]
- Yin, B.L.; Liu, Y.; Li, H.; He, S. Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions. J. Comput. Phys. 2019, 379, 351–372. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Fan, E.Y.; Yin, B.L.; Li, H.; Wang, J.F. TT-M finite element algorithm for a two-dimensional space fractional Gray-Scott model. Comput. Math. Appl. 2020, 80, 1793–1809. [Google Scholar] [CrossRef]
- Wen, C.; Liu, Y.; Yin, B.L.; Li, H.; Wang, J.F. Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model. Numer. Algorithms 2021, 88, 523–553. [Google Scholar] [CrossRef]
- Tian, J.L.; Sun, Z.Y.; Liu, Y.; Li, H. TT-M Finite Element Algorithm for the Coupled Schrödinger–Boussinesq Equations. Axioms 2022, 11, 314. [Google Scholar] [CrossRef]
- Qiu, W.L.; Xu, D.; Guo, J.; Zhou, J. A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model. Numer. Algorithms 2020, 85, 39–58. [Google Scholar] [CrossRef]
- Xu, D.; Guo, J.; Qiu, W.L. Time two-grid algorithm based on finite difference method for two-dimensional nonlinear fractional evolution equations. Appl. Numer. Math. 2019, 152, 169–184. [Google Scholar] [CrossRef]
- Niu, Y.X.; Liu, Y.; Li, H.; Liu, F.W. Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media. Math. Comput. Simul. 2023, 203, 387–407. [Google Scholar] [CrossRef]
- He, S.; Liu, Y.; Li, H. A time two-mesh compact difference method for the one-dimensional nonlinear schrödinger equation. Entropy 2022, 24, 806. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.L. Application of Discrete Functional Analysis to the Finite Difference Method; International Academic Publishers: Beijing, China, 1990. [Google Scholar]
SNFD Scheme in [22] | |||||
---|---|---|---|---|---|
CPU(s) | |||||
— | — | 0.14 | |||
2.02 | 2.02 | 0.51 | |||
2.01 | 2.01 | 12.30 | |||
2.00 | 2.00 | 136.31 | |||
2.00 | 2.00 | 1943.47 | |||
Present scheme | |||||
CPU(s) | |||||
— | — | 0.10 | |||
2.04 | 2.03 | 0.30 | |||
2.01 | 2.01 | 7.53 | |||
2.00 | 2.00 | 76.99 | |||
2.00 | 2.00 | 1297.88 |
SNFD Scheme in [22] | |||||
---|---|---|---|---|---|
CPU(s) | |||||
— | — | 2.47 | |||
1.04 | 1.04 | 14.09 | |||
1.02 | 1.02 | 109.20 | |||
1.01 | 1.01 | 770.01 | |||
1.00 | 1.00 | 5792.53 | |||
Present scheme | |||||
CPU(s) | |||||
— | — | 1.49 | |||
1.04 | 1.04 | 7.10 | |||
1.02 | 1.02 | 51.40 | |||
1.01 | 1.01 | 414.33 | |||
1.00 | 1.01 | 3289.71 |
TT-M Finite Difference Scheme | ||||
---|---|---|---|---|
4.4721359549 | 4.4721359549 | 4.4721359549 | 4.4721359549 | |
4.4721359549 | 4.4721359549 | 4.4721359549 | 4.4721359549 | |
4.4721359549 | 4.4721359549 | 4.4721359549 | 4.4721359549 | |
4.4721359549 | 4.4721359549 | 4.4721359549 | 4.4721359549 | |
4.4721359549 | 4.4721359549 | 4.4721359549 | 4.4721359549 | |
4.4721359549 | 4.4721359549 | 4.4721359549 | 4.4721359549 | |
4.4721359549 | 4.4721359549 | 4.4721359549 | 4.4721359549 | |
4.4721359549 | 4.4721359549 | 4.4721359549 | 4.4721359549 | |
4.4721359549 | 4.4721359549 | 4.4721359549 | 4.4721359549 |
TT-M Finite Difference Scheme | ||||
---|---|---|---|---|
6.7082039324 | 6.7082039324 | 6.7082039324 | 6.7082039324 | |
6.7082039324 | 6.7082039324 | 6.7082039324 | 6.7082039324 | |
6.7082039324 | 6.7082039324 | 6.7082039324 | 6.7082039324 | |
6.7082039324 | 6.7082039324 | 6.7082039324 | 6.7082039324 | |
6.7082039324 | 6.7082039324 | 6.7082039324 | 6.7082039324 | |
6.7082039324 | 6.7082039324 | 6.7082039324 | 6.7082039324 | |
6.7082039324 | 6.7082039324 | 6.7082039324 | 6.7082039324 | |
6.7082039324 | 6.7082039324 | 6.7082039324 | 6.7082039324 | |
6.7082039323 | 6.7082039323 | 6.7082039323 | 6.7082039323 |
TT-M Finite Difference Scheme | ||||
---|---|---|---|---|
17.3814360100 | 17.3890764778 | 17.3909982095 | 17.3914793723 | |
17.3879364459 | 17.3894925427 | 17.3910247524 | 17.3914810404 | |
17.4021575260 | 17.3904434452 | 17.3910850544 | 17.3914848239 | |
17.4178948195 | 17.3914089843 | 17.3911453660 | 17.3914885933 | |
17.4279575149 | 17.3919924045 | 17.3911803618 | 17.3914907570 | |
17.4320624736 | 17.3921089940 | 17.3911854445 | 17.3914910387 | |
17.4298852213 | 17.3919072419 | 17.3911710024 | 17.3914901056 | |
17.4257242289 | 17.3915916231 | 17.3911504036 | 17.3914888028 | |
17.4208004460 | 17.3913048704 | 17.3911324701 | 17.3914876800 |
TT-M Finite Difference Scheme | ||||
---|---|---|---|---|
29.8645685095 | 29.8270800111 | 29.8174683777 | 29.8150480627 | |
29.5194998279 | 29.7377964805 | 29.7949677954 | 29.8094115019 | |
29.2953094352 | 29.6804305056 | 29.7805099425 | 29.8057894879 | |
29.2373157339 | 29.6665651150 | 29.7770997278 | 29.8049405034 | |
29.3052034101 | 29.6864373371 | 29.7822468973 | 29.8062391542 | |
29.4333002603 | 29.7204018949 | 29.7909264484 | 29.8084218678 | |
29.5520897511 | 29.7519209103 | 29.7989376025 | 29.8104338587 | |
29.6355327196 | 29.7733189521 | 29.8043614200 | 29.8117950932 | |
29.6765644108 | 29.7843463859 | 29.8071613054 | 29.8124980105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; He, S.; Bai, Q.; Liu, J. A Time Two-Mesh Finite Difference Numerical Scheme for the Symmetric Regularized Long Wave Equation. Fractal Fract. 2023, 7, 487. https://doi.org/10.3390/fractalfract7060487
Gao J, He S, Bai Q, Liu J. A Time Two-Mesh Finite Difference Numerical Scheme for the Symmetric Regularized Long Wave Equation. Fractal and Fractional. 2023; 7(6):487. https://doi.org/10.3390/fractalfract7060487
Chicago/Turabian StyleGao, Jingying, Siriguleng He, Qingmei Bai, and Jie Liu. 2023. "A Time Two-Mesh Finite Difference Numerical Scheme for the Symmetric Regularized Long Wave Equation" Fractal and Fractional 7, no. 6: 487. https://doi.org/10.3390/fractalfract7060487
APA StyleGao, J., He, S., Bai, Q., & Liu, J. (2023). A Time Two-Mesh Finite Difference Numerical Scheme for the Symmetric Regularized Long Wave Equation. Fractal and Fractional, 7(6), 487. https://doi.org/10.3390/fractalfract7060487