Approximate Analytical Solution of Fuzzy Linear Volterra Integral Equation via Elzaki ADM
Abstract
:1. Introduction
2. Preliminaries
- 1.
- If is a differentiable function in first form i.e., (1) differentiable, then
- 2.
- If is a differentiable function in second form i.e., (2) differentiable, then
- 1.
- 2.
- 3.
- 4.
- 1.
- If are (1) differentiable
- 2.
- If are (2) differentiable
- 3.
- If is (1)-differentiable and are (2) differentiable
- 4.
- If is (2)-differentiable and are (1) differentiable
3. The Main Advantages of the Study
4. Basic Notion of Regime
5. Convergence Analysis and Error Estimate
- (i)
- Let be a Banach space and let and be in . Suppose , then the series solution , which is defined, converges to the lower-bound solution whenever , that I,s for any given , there exists a positive number , such that .
- (ii)
- Let be finite and be its approximate solution. Suppose , such that , then the max. absolute error for the lower bound solution is:
- (i)
- (i)
- Let be a Banach space and let and be in . Suppose , then the series solution , which is defined , converges to the upper bound solution whenever , that is, for any given , there exists a positive number , such that .
- (ii)
- Let be finite and be its approximate solution. Suppose , such that || , then the max. absolute error for the upper bound solution is:
- (i)
- (ii)
6. Numerical Experiments
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam Khan, N.; Razzaq, O.A.; Ayyaz, M. On the solution of fuzzy differential equations by Fuzzy Sumudu Transform. Nonlinear Eng. 2015, 4, 49–60. [Google Scholar] [CrossRef]
- Maitama, S.; Zhao, W. Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives. Comput. Appl. Math. 2021, 40, 86. [Google Scholar] [CrossRef]
- Khastan, A.; Bahrami, F.; Ivaz, K. New results on multiple solutions for th-order fuzzy differential equations under generalized differentiability. Bound. Value Probl. 2009, 2009, 1–13. [Google Scholar] [CrossRef]
- Salahshour, S.; Allahviranloo, T. Applications of fuzzy Laplace transforms. Soft Comput. 2013, 17, 145–158. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Abbasbandy, S.; Salahshour, S.; Hakimzadeh, A. A new method for solving fuzzy linear differential equations. Computing 2011, 92, 181–197. [Google Scholar] [CrossRef]
- Salgado, S.A.B.; Esmi, E.; Sánchez, D.E.; de Barros, L.C. Solving interactive fuzzy initial value problem via fuzzy Laplace transform. Comput. Appl. Math. 2021, 40, 26. [Google Scholar] [CrossRef]
- Ullah, A.; Ullah, Z.; Abdeljawad, T.; Hammouch, Z.; Shah, K. A hybrid method for solving fuzzy Volterra integral equations of separable type kernels. J. King Saud Univ.-Sci. 2021, 33, 101246. [Google Scholar] [CrossRef]
- Alidema, A.F. Applications of Double Fuzzy Sumudu Adomain Decompositon Method for Two-dimensional Volterra Fuzzy Integral Equations. Eur. J. Pure Appl. Math. 2022, 15, 1363–1375. [Google Scholar] [CrossRef]
- Prakash, A.; Veeresha, P.; Prakasha, D.G.; Goyal, M. A homotopy technique for a fractional order multi-dimensional telegraph equation via the Laplace transform. Eur. Phys. J. Plus 2019, 134, 19. [Google Scholar] [CrossRef]
- Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Shah, R.; Chung, J.D. Analytical Investigation of Fractional-Order Korteweg–De-Vries-Type Equations under Atangana–Baleanu–Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. A powerful approach for fractional Drinfeld–Sokolov–Wilson equation with Mittag-Leffler law. Alex. Eng. J. 2019, 58, 1301–1311. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Veeresha, P.; Rawashdeh, M.S. Numerical solution for (2 + 1)-dimensional time-fractional coupled Burger equations using fractional natural decomposition method. Math. Methods Appl. Sci. 2019, 42, 3409–3427. [Google Scholar] [CrossRef]
- Shah, N.A.; Agarwal, P.; Chung, J.D.; El-Zahar, E.R.; Hamed, Y.S. Analysis of Optical Solitons for Nonlinear Schrödinger Equation with Detuning Term by Iterative Transform Method. Symmetry 2020, 12, 1850. [Google Scholar] [CrossRef]
- Ali, Z.; Rabiei, F.; Hosseini, K. A fractal–fractional-order modified Predator–Prey mathematical model with immigrations. Math. Comput. Simul. 2023, 207, 466–481. [Google Scholar] [CrossRef]
- Ou, W.; Xu, C.; Cui, Q.; Liu, Z.; Pang, Y.; Farman, M.; Ahmad, S.; Zeb, A. Mathematical study on bifurcation dynamics and control mechanism of tri-neuron bidirectional associative memory neural networks including delay. Math. Methods Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Li, P.; Gao, R.; Xu, C.; Li, Y.; Akgül, A.; Baleanu, D. Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system. Chaos Solitons Fractals 2023, 166, 112975. [Google Scholar] [CrossRef]
= 0.1 | = 0.5 | |||||
---|---|---|---|---|---|---|
Approx. | Exact | Abs. Err. | Approx. | Exact | Abs. Err. | |
0.1 | 3.115512921 | 3.115512921 | 0 | 3.517514588 | 3.517514588 | 0 |
0.2 | 3.162206943 | 3.162206944 | 1.00 × 10−9 | 3.570233644 | 3.570233644 | 0 |
0.3 | 3.240549394 | 3.240549393 | 1.00 × 10−9 | 3.517514588 | 3.658684800 | 1.41 × 10−1 |
= 0.1 | = 0.5 | |||||
---|---|---|---|---|---|---|
Approx. | Exact | Abs. Err. | Approx. | Exact | Abs. Err. | |
0.1 | 7.839032511 | 7.839032511 | 0 | 7.035029177 | 7.035029176 | 1.00 × 10−9 |
0.2 | 7.956520693 | 7.956520697 | 4.00 × 10−9 | 7.140467289 | 7.140467292 | 3.00 × 10−9 |
0.3 | 8.153640410 | 8.153640409 | 1.00 × 10−9 | 7.317369598 | 7.317369598 | 0 |
= 0.1 | = 0.5 | |||||
---|---|---|---|---|---|---|
Approx. | Exact | Abs. Err. | Approx. | Exact | Abs. Err. | |
0.1 | 0.089983 | 0.089983 | 0 | 0.449916 | 0.449916 | 0 |
0.2 | 0.079866 | 0.079866 | 0 | 0.399331 | 0.399331 | 1.00 × 10−10 |
0.3 | 0.069547 | 0.069547 | 1.00 × 10−11 | 0.3477398533 | 0.347739 | 0 |
= 0.1 | = 0.5 | |||||
---|---|---|---|---|---|---|
Approx. | Exact | Abs. Err. | Approx. | Exact | Abs. Err. | |
0.1 | 1.709683175 | 1.709683175 | 0 | 1.349749875 | 1.349749875 | 0 |
0.2 | 1.517461595 | 1.517461595 | 0 | 1.197995996 | 1.197995996 | 0 |
0.3 | 1.321411443 | 1.321411443 | 0 | 1.043219560 | 1.043219560 | 0 |
= 0.1 | = 0.5 | |||||
---|---|---|---|---|---|---|
Approx. | Exact | Abs. Err. | Approx. | Exact | Abs. Err. | |
0.1 | −0.094653 | −0.094653 | 7.00 × 10−11 | −0.052585 | −0.052585 | 3.00 × 10−11 |
0.2 | −0.199262 | −0.199262 | 2.00 × 10−10 | −0.110701 | −0.110701 | 0 |
0.3 | −0.314872 | −0.314872 | 5.00 × 10−10 | −0.174929 | −0.174929 | 3.00 × 10−10 |
= 0.1 | = 0.5 | |||||
---|---|---|---|---|---|---|
Approx. | Exact | Abs. Err. | Approx. | Exact | Abs. Err. | |
0.1 | 0.094653 | 0.094653 | 7.00 × 10−11 | 0.052585 | 0.052585 | 3.00 × 10−11 |
0.2 | 0.199262 | 0.199262 | 2.00 × 10−10 | 0.110701 | 0.110701 | 0 |
0.3 | 0.314872 | 0.314872 | 5.00 × 10−10 | 0.174929 | 0.174929 | 3.00 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapoor, M.; Bin Turki, N.; Shah, N.A. Approximate Analytical Solution of Fuzzy Linear Volterra Integral Equation via Elzaki ADM. Fractal Fract. 2023, 7, 650. https://doi.org/10.3390/fractalfract7090650
Kapoor M, Bin Turki N, Shah NA. Approximate Analytical Solution of Fuzzy Linear Volterra Integral Equation via Elzaki ADM. Fractal and Fractional. 2023; 7(9):650. https://doi.org/10.3390/fractalfract7090650
Chicago/Turabian StyleKapoor, Mamta, Nasser Bin Turki, and Nehad Ali Shah. 2023. "Approximate Analytical Solution of Fuzzy Linear Volterra Integral Equation via Elzaki ADM" Fractal and Fractional 7, no. 9: 650. https://doi.org/10.3390/fractalfract7090650
APA StyleKapoor, M., Bin Turki, N., & Shah, N. A. (2023). Approximate Analytical Solution of Fuzzy Linear Volterra Integral Equation via Elzaki ADM. Fractal and Fractional, 7(9), 650. https://doi.org/10.3390/fractalfract7090650